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Adding the Tensor

An analogue of Ring Theory

1. Last talk we discussed the axioms and some elementary examples and properties of
Triangulated Categories. We saw that while they were not Abelian categories in
general, they behaved rather similarly.
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An analogue of Ring Theory

1. Last talk we discussed the axioms and some elementary examples and properties of
Triangulated Categories. We saw that while they were not Abelian categories in
general, they behaved rather similarly.

2. Moreover, we saw that we could get pretty far treating them as some sort of strange
Group.

2.1 We treated thick subcategories as normal subgroups, Triangulated Functors as
Group Homomorphisms, and Verdier Localization as the natural projection
map.

3. Today we will continue this analogy, and will now talk about what the Triangulated
Analogue of a Ring should be.

3.1 We call such "rings" Tensor-Triangulated Categories
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Adding the Tensor

An analogue of Ring Theory

1. Last talk we discussed the axioms and some elementary examples and properties of
Triangulated Categories. We saw that while they were not Abelian categories in
general, they behaved rather similarly.

2. Moreover, we saw that we could get pretty far treating them as some sort of strange
Group.

2.1 We treated thick subcategories as normal subgroups, Triangulated Functors as
Group Homomorphisms, and Verdier Localization as the natural projection
map.

3. Today we will continue this analogy, and will now talk about what the Triangulated
Analogue of a Ring should be.

3.1 We call such "rings" Tensor-Triangulated Categories
3.2 With this product structure in hand (to be defined soon), we can make progress

on some promised Unification we hinted at last week. Let us recall those
leading questions now.
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Some Leading Questions

Unification

1. Since so many examples of these Triangulated Categories exist ranging from
algebra/geometry (examples 2,3,4) to topology (1,5,6) to analysis (7) the vague hope
is that by studying "Triangulated Categories" writ large, one can learn things about
all these topics in one fell swoop.

2. For example- Can we relate the ideas of line bundles in Algebraic-Geometry and
Endotrivial Modules in Representation Theory? Moreover, can we relate Spec(R) for
a commutative ring with Support Varieties VG := Proj(H•(G,k))

3. There is a famous nilpotence theorem of Hopkins and Smith in Algebraic Topology-
are there analogous nilpotent theorems in other contexts? In Alg Topology this
nilpotence theorem provides a stratification for our category, can we expect the same
for other nilpotence theorems?
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The Axioms, Take 2

Bring on the Tensor

Throughout the next slides, we will let K be an essentially small triangulated category.
(That is, there is only a Set of Isomorphism Classes of Objects).
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The Axioms, Take 2

Bring on the Tensor

Throughout the next slides, we will let K be an essentially small triangulated category.
(That is, there is only a Set of Isomorphism Classes of Objects).

1. We say K is a Tensor Triangulated Category (tt category), written as (K,⊗, 1) if there
is a functor −⊗− : K×K→ K satisfying a bunch of axioms (see below) and such
that −⊗− is a triangulated functor in each variable.
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The Axioms, Take 2

Bring on the Tensor

Throughout the next slides, we will let K be an essentially small triangulated category.
(That is, there is only a Set of Isomorphism Classes of Objects).

1. We say K is a Tensor Triangulated Category (tt category), written as (K,⊗, 1) if there
is a functor −⊗− : K×K→ K satisfying a bunch of axioms (see below) and such
that −⊗− is a triangulated functor in each variable.

1.1 We have the following natural isomorphisms:

la : 1⊗ a ∼= a

ra : a⊗ 1 ∼= a

τa,b : a⊗ b ∼= b⊗ a
along with associativity axioms in such a way that everything behaves nice
with one another.

© David Rubinstein 10



The Axioms, Take 2

Bring on the Tensor

Throughout the next slides, we will let K be an essentially small triangulated category.
(That is, there is only a Set of Isomorphism Classes of Objects).

1. We say K is a Tensor Triangulated Category (tt category), written as (K,⊗, 1) if there
is a functor −⊗− : K×K→ K satisfying a bunch of axioms (see below) and such
that −⊗− is a triangulated functor in each variable.

1.1 We have the following natural isomorphisms:

la : 1⊗ a ∼= a

ra : a⊗ 1 ∼= a

τa,b : a⊗ b ∼= b⊗ a
along with associativity axioms in such a way that everything behaves nice
with one another.

2. We think of ⊗ as a commutative product and 1 as the unit. Indeed, in the literature,
you will often see the above referred to as a "Symmetric Monoidal Category"
(although this can refer to any tensor category, not necessarily triangulated), or an
"Axiomatic Stable Homotopy Theory"
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All assumptions on the table

Duelizable Objects

Before we can investigate what the tensor gives us, we need to give one more
definition/assumption.
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Before we can investigate what the tensor gives us, we need to give one more
definition/assumption.

1. Let (K,⊗, 1) be a tt category. Then we say K is a closed symmetric monoidal category
if, for each k ∈ K the functor k⊗− has a (triangulated) right adjoint, denoted
hom(k,−). These can be assembled into a (triangulated) bifunctor hom(−,−)
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Before we can investigate what the tensor gives us, we need to give one more
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1. Let (K,⊗, 1) be a tt category. Then we say K is a closed symmetric monoidal category
if, for each k ∈ K the functor k⊗− has a (triangulated) right adjoint, denoted
hom(k,−). These can be assembled into a (triangulated) bifunctor hom(−,−)

2. Then for each k ∈ K we denote the duel of k as k∨ := hom(k, 1). There is a natural
map k∨ ⊗ l→ hom(k, l) given from the counit of the adjunction.
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1. Let (K,⊗, 1) be a tt category. Then we say K is a closed symmetric monoidal category
if, for each k ∈ K the functor k⊗− has a (triangulated) right adjoint, denoted
hom(k,−). These can be assembled into a (triangulated) bifunctor hom(−,−)

2. Then for each k ∈ K we denote the duel of k as k∨ := hom(k, 1). There is a natural
map k∨ ⊗ l→ hom(k, l) given from the counit of the adjunction.

3. We say that K is rigid, if this natural map k∨ ⊗ l ∼−→ hom(k, l) is an isomorphism for
all k,l. (sometimes this condition is called "Strongly Duelizable" )
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All assumptions on the table

Duelizable Objects

Before we can investigate what the tensor gives us, we need to give one more
definition/assumption.

1. Let (K,⊗, 1) be a tt category. Then we say K is a closed symmetric monoidal category
if, for each k ∈ K the functor k⊗− has a (triangulated) right adjoint, denoted
hom(k,−). These can be assembled into a (triangulated) bifunctor hom(−,−)

2. Then for each k ∈ K we denote the duel of k as k∨ := hom(k, 1). There is a natural
map k∨ ⊗ l→ hom(k, l) given from the counit of the adjunction.

3. We say that K is rigid, if this natural map k∨ ⊗ l ∼−→ hom(k, l) is an isomorphism for
all k,l. (sometimes this condition is called "Strongly Duelizable" )

4. Rigidity is an assumption that just simplifies our life a lot- for example, the
tensor-hom adjunctions imply the k is a direct summand of k⊗ k⊗ k∨ and that k∨

is a direct summand of k⊗ k∨ ⊗ k∨. We will note in a few slides why this is useful.
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Examples of tt Categories

Bring on the Examples

The following are examples of tt categories. We shall write them all as (K,⊗, 1)
1. Let k be a field of char p dividing the order of the group G. Then (stab(kG),⊗k,k) is a

tt category, where the tensor is the usual tensor with diagonal action of g
g(M⊗k N) = gM⊗k gN
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The following are examples of tt categories. We shall write them all as (K,⊗, 1)
1. Let k be a field of char p dividing the order of the group G. Then (stab(kG),⊗k,k) is a

tt category, where the tensor is the usual tensor with diagonal action of g
g(M⊗k N) = gM⊗k gN

2. Let R be a commutative ring. Then (Db(R),⊗L,R) is a tt category where ⊗L is the
Left derived tensor product.
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g(M⊗k N) = gM⊗k gN
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Examples of tt Categories

Bring on the Examples

The following are examples of tt categories. We shall write them all as (K,⊗, 1)
1. Let k be a field of char p dividing the order of the group G. Then (stab(kG),⊗k,k) is a

tt category, where the tensor is the usual tensor with diagonal action of g
g(M⊗k N) = gM⊗k gN

2. Let R be a commutative ring. Then (Db(R),⊗L,R) is a tt category where ⊗L is the
Left derived tensor product.

3. Again, let R be a commutative ring. Then (Dperf(R),⊗L,R) is a tt category (where
Dperf(R) is the derived category of perfect complexes)

4. (SHfinite,∧,S0) or more generally the G-Equivariant Stable Homotopy Category for
G a Group (SHfinite(G),∧,S0)
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Examples of tt Categories

Bring on the Examples

The following are examples of tt categories. We shall write them all as (K,⊗, 1)
1. Let k be a field of char p dividing the order of the group G. Then (stab(kG),⊗k,k) is a

tt category, where the tensor is the usual tensor with diagonal action of g
g(M⊗k N) = gM⊗k gN

2. Let R be a commutative ring. Then (Db(R),⊗L,R) is a tt category where ⊗L is the
Left derived tensor product.

3. Again, let R be a commutative ring. Then (Dperf(R),⊗L,R) is a tt category (where
Dperf(R) is the derived category of perfect complexes)

4. (SHfinite,∧,S0) or more generally the G-Equivariant Stable Homotopy Category for
G a Group (SHfinite(G),∧,S0)

5. Variations of the theme for points 2 and 3 for X a quasi compact, quasi separated
scheme.
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Tensor Ideals and Tensor Functors

What’s the Big Ideal?

Until further notice, let (K,⊗, 1) be a closed, rigid tt category. Then, continuing our
analogy of treating K as a ring, we introduce the following definitions:
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Until further notice, let (K,⊗, 1) be a closed, rigid tt category. Then, continuing our
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Until further notice, let (K,⊗, 1) be a closed, rigid tt category. Then, continuing our
analogy of treating K as a ring, we introduce the following definitions:

1. We say I ⊆ K is a tensor-ideal, if I is a thick subcategory of K such that K⊗ I ⊆ I
2. We say P ⊆ K is a prime tensor ideal if, whenever a⊗ b ∈ P then either a or b is in
P
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Tensor Ideals and Tensor Functors

What’s the Big Ideal?

Until further notice, let (K,⊗, 1) be a closed, rigid tt category. Then, continuing our
analogy of treating K as a ring, we introduce the following definitions:

1. We say I ⊆ K is a tensor-ideal, if I is a thick subcategory of K such that K⊗ I ⊆ I
2. We say P ⊆ K is a prime tensor ideal if, whenever a⊗ b ∈ P then either a or b is in
P

3. Let (T ,⊗, 1) be another closed, rigid, tt category. Then a tt functor F : K→ T is a
triangulated functor that is also "strong monoidal" (that is F(a⊗ b) ∼= F(a)⊗ F(b)-
with a whole bunch of compatibility axioms as well)

© David Rubinstein 25



Tensor Ideals and Tensor Functors

What’s the Big Ideal?

Until further notice, let (K,⊗, 1) be a closed, rigid tt category. Then, continuing our
analogy of treating K as a ring, we introduce the following definitions:

1. We say I ⊆ K is a tensor-ideal, if I is a thick subcategory of K such that K⊗ I ⊆ I
2. We say P ⊆ K is a prime tensor ideal if, whenever a⊗ b ∈ P then either a or b is in
P

3. Let (T ,⊗, 1) be another closed, rigid, tt category. Then a tt functor F : K→ T is a
triangulated functor that is also "strong monoidal" (that is F(a⊗ b) ∼= F(a)⊗ F(b)-
with a whole bunch of compatibility axioms as well)

Rmk: The assumption that K is rigid, and the remark about k,k∨ being summands of
respective tensors implies that a tensor ideal I is automatically closed under taking duals,
and is radical (k⊗n ∈ I =⇒ k ∈ I). This second part will be very important in a few
slides.
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Verdier Localization revisited

Example of tt functor

We saw last talk that given a thick subgcategory C ⊆ K that we could form the quotient
category K/C in such a way that it was triangulated, and where the universal quotient
functor q : K→ K/C is a triangulated functor. We want to extend this construction to the
tt world.
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Verdier Localization revisited

Example of tt functor

We saw last talk that given a thick subgcategory C ⊆ K that we could form the quotient
category K/C in such a way that it was triangulated, and where the universal quotient
functor q : K→ K/C is a triangulated functor. We want to extend this construction to the
tt world.

1. Now let I ⊆ K be a tt ideal. Then we can form the triangulated category K/I with
universal functor q : K→ K/I just because I is thick.
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Verdier Localization revisited

Example of tt functor

We saw last talk that given a thick subgcategory C ⊆ K that we could form the quotient
category K/C in such a way that it was triangulated, and where the universal quotient
functor q : K→ K/C is a triangulated functor. We want to extend this construction to the
tt world.

1. Now let I ⊆ K be a tt ideal. Then we can form the triangulated category K/I with
universal functor q : K→ K/I just because I is thick.

2. The point is, that now we have the following, two hopefully unsurprising, facts:

2.1 K/I is a tt category.
2.2 The universal functor q : K→ K/I is a tensor functor.
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TT Geometry-take 1

A Naive Goal

Given a tt category K, the ultimate goal would be to classify all objects up to
isomorphism. Unfortunately, such a desire is absolutely impossible in general. So we
must resign ourselves to a slightly weaker version of classification.
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A Naive Goal

Given a tt category K, the ultimate goal would be to classify all objects up to
isomorphism. Unfortunately, such a desire is absolutely impossible in general. So we
must resign ourselves to a slightly weaker version of classification.

1. The main point is that we have more structure to play around with! We can take
tensors, cones, direct sums, direct summands, suspensions, ect. So rather than
demanding we classify an object X up to isomorphism, we ask to classify X "up to the
tt structure"
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Given a tt category K, the ultimate goal would be to classify all objects up to
isomorphism. Unfortunately, such a desire is absolutely impossible in general. So we
must resign ourselves to a slightly weaker version of classification.

1. The main point is that we have more structure to play around with! We can take
tensors, cones, direct sums, direct summands, suspensions, ect. So rather than
demanding we classify an object X up to isomorphism, we ask to classify X "up to the
tt structure"

2. In other words we want to know when we can reach an object Y from X using all the
structure at hand. That is we want to know if Y is in the tensor ideal generated by X!
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TT Geometry- take 1

A Naive Goal

Given a tt category K, the ultimate goal would be to classify all objects up to
isomorphism. Unfortunately, such a desire is absolutely impossible in general. So we
must resign ourselves to a slightly weaker version of classification.

1. The main point is that we have more structure to play around with! We can take
tensors, cones, direct sums, direct summands, suspensions, ect. So rather than
demanding we classify an object X up to isomorphism, we ask to classify X "up to the
tt structure"

2. In other words we want to know when we can reach an object Y from X using all the
structure at hand. That is we want to know if Y is in the tensor ideal generated by X!

3. Therefore, our main task is to classify thick tensor ideals of K! How to do this.....?
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TT Geometry- Take 2

The Balmer Spectrum

The definitions given thus far have a strong bias towards commutative algebra. It is
therefore not surprising that the Prime Ideals play a special role.
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TT Geometry- Take 2

The Balmer Spectrum

The definitions given thus far have a strong bias towards commutative algebra. It is
therefore not surprising that the Prime Ideals play a special role.

1. The Spectrum of a tt category is the set Spc(K) = {P ⊆ K : P is a prime ideal}

2. The support of an object k is the collection of all prime ideals k is NOT in,
supp(k)={P ∈ Spc(K) : k /∈ P }
2.1 Rmk: Recall the kernal of the universal functor q : K→ K/P is precisely P. So

saying k /∈ P amounts to saying k 6= 0 in the tt category K/P
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The Balmer Spectrum

The definitions given thus far have a strong bias towards commutative algebra. It is
therefore not surprising that the Prime Ideals play a special role.

1. The Spectrum of a tt category is the set Spc(K) = {P ⊆ K : P is a prime ideal}

2. The support of an object k is the collection of all prime ideals k is NOT in,
supp(k)={P ∈ Spc(K) : k /∈ P }
2.1 Rmk: Recall the kernal of the universal functor q : K→ K/P is precisely P. So

saying k /∈ P amounts to saying k 6= 0 in the tt category K/P
3. We make Spc(K) into a topological space by giving letting {supp(k)}k∈K be a basis of

closed subsets.
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The Balmer Spectrum

The definitions given thus far have a strong bias towards commutative algebra. It is
therefore not surprising that the Prime Ideals play a special role.

1. The Spectrum of a tt category is the set Spc(K) = {P ⊆ K : P is a prime ideal}

2. The support of an object k is the collection of all prime ideals k is NOT in,
supp(k)={P ∈ Spc(K) : k /∈ P }
2.1 Rmk: Recall the kernal of the universal functor q : K→ K/P is precisely P. So

saying k /∈ P amounts to saying k 6= 0 in the tt category K/P
3. We make Spc(K) into a topological space by giving letting {supp(k)}k∈K be a basis of

closed subsets.

4. We shall see that classifying the tt ideals of K more or less amounts to classifying
nice subsets of Spc(K). Let us first see some basic properties of the Spectrum.
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TT Geometry-Take 2

More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,
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More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅
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TT Geometry-Take 2

More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
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More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
3. supp(Σx) = supp(x) for all x
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More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
3. supp(Σx) = supp(x) for all x

4. supp(z) ⊆ supp(x)∪ supp(y) for any distinguished triangle x→ y→ z→ Σx

© David Rubinstein 43



TT Geometry-Take 2

More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
3. supp(Σx) = supp(x) for all x

4. supp(z) ⊆ supp(x)∪ supp(y) for any distinguished triangle x→ y→ z→ Σx

5. supp(x⊗ y) = supp(x)∩ supp(y)
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More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
3. supp(Σx) = supp(x) for all x

4. supp(z) ⊆ supp(x)∪ supp(y) for any distinguished triangle x→ y→ z→ Σx

5. supp(x⊗ y) = supp(x)∩ supp(y)
We say a "Support Data" on a tt category is a pair (X,σ) where X is a topological space and
σ(k) is a closed subset in X for each k ∈ K satisfying conditions 1-5 above.

A morphism of support data (X,σ) f→ (Y,β) is a continuous map X→ Y such that
f−1(β(k)) = σ(k).
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More on Balmer Spectrum

It should hopefully come as no surprise that the Balmer spectrum satisfies a universal
property. To state what the universal property is, we need a few results first: Let
K,Spc(K), supp(k) be as above. Then,

1. supp(1) = Spc(K) and supp(0)=∅

2. supp(a⊕ b) = supp(a)∪ supp(b)
3. supp(Σx) = supp(x) for all x

4. supp(z) ⊆ supp(x)∪ supp(y) for any distinguished triangle x→ y→ z→ Σx

5. supp(x⊗ y) = supp(x)∩ supp(y)
We say a "Support Data" on a tt category is a pair (X,σ) where X is a topological space and
σ(k) is a closed subset in X for each k ∈ K satisfying conditions 1-5 above.

A morphism of support data (X,σ) f→ (Y,β) is a continuous map X→ Y such that
f−1(β(k)) = σ(k).

Thrm : (Spc(K), supp) is the terminal support data on K
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TT Geometry- Take 3

Some basic properties

With the Balmer spectrum in hand, let us now see some basic applications.
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Some basic properties

With the Balmer spectrum in hand, let us now see some basic applications.
1. We have supp(k) = ∅ ⇐⇒ k ∼= 0 (this uses that K is rigid)
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TT Geometry- Take 3

Some basic properties

With the Balmer spectrum in hand, let us now see some basic applications.
1. We have supp(k) = ∅ ⇐⇒ k ∼= 0 (this uses that K is rigid)

2. Let P ∈ Spc(K). Then {P } = {Q ∈ Spc(K) : Q ⊆ P }. In particular
{P1} = {P2} ⇐⇒ P1 = P2. We say such a space is T0

© David Rubinstein 49



TT Geometry- Take 3

Some basic properties

With the Balmer spectrum in hand, let us now see some basic applications.
1. We have supp(k) = ∅ ⇐⇒ k ∼= 0 (this uses that K is rigid)

2. Let P ∈ Spc(K). Then {P } = {Q ∈ Spc(K) : Q ⊆ P }. In particular
{P1} = {P2} ⇐⇒ P1 = P2. We say such a space is T0

3. Moreover, Spc(K) is a "Spectral" topological space: that is, it is T0; it is
quasi-compact; the quasi-compact open subsets of Spc(K) are closed under finite
intersections and form an open basis of Spc(K); and every non-empty irreducible
closed subset of Spc(K) has a generic point.
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Some basic properties

With the Balmer spectrum in hand, let us now see some basic applications.
1. We have supp(k) = ∅ ⇐⇒ k ∼= 0 (this uses that K is rigid)

2. Let P ∈ Spc(K). Then {P } = {Q ∈ Spc(K) : Q ⊆ P }. In particular
{P1} = {P2} ⇐⇒ P1 = P2. We say such a space is T0

3. Moreover, Spc(K) is a "Spectral" topological space: that is, it is T0; it is
quasi-compact; the quasi-compact open subsets of Spc(K) are closed under finite
intersections and form an open basis of Spc(K); and every non-empty irreducible
closed subset of Spc(K) has a generic point.

4. The assignment K→ Spc(K) is a contravarient functor. Given a tt functor K F→ T
we get a continuous (spectral) map Spc(T ) Spc(F)→ Spc(K)
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TT Geometry- Take 3

Thomason Subsets and the Classifcation Thrm

Remember, our goal is to classify tt ideals of K. We need one final topological notion
before we can state the classification.
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TT Geometry- Take 3

Thomason Subsets and the Classifcation Thrm

Remember, our goal is to classify tt ideals of K. We need one final topological notion
before we can state the classification.

1. A Thomason subset V ⊆ X of a spectral topological space X is a subset of the form
V =

⋃
α Vα where each Vα is closed with quasi-compact open complements.
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TT Geometry- Take 3

Thomason Subsets and the Classifcation Thrm

Remember, our goal is to classify tt ideals of K. We need one final topological notion
before we can state the classification.

1. A Thomason subset V ⊆ X of a spectral topological space X is a subset of the form
V =

⋃
α Vα where each Vα is closed with quasi-compact open complements.

2. Now recall, Spc(K) is spectral. So let V ⊆ Spc(K) be a Thomason subset, and let
KV = {x ∈ K : supp(x) ⊆ V}. It turns out this is a tt ideal.
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TT Geometry- Take 3

Thomason Subsets and the Classifcation Thrm

Remember, our goal is to classify tt ideals of K. We need one final topological notion
before we can state the classification.

1. A Thomason subset V ⊆ X of a spectral topological space X is a subset of the form
V =

⋃
α Vα where each Vα is closed with quasi-compact open complements.

2. Now recall, Spc(K) is spectral. So let V ⊆ Spc(K) be a Thomason subset, and let
KV = {x ∈ K : supp(x) ⊆ V}. It turns out this is a tt ideal.

3. Now let P ∈ Spc(K), and let V =
⋃
x∈P supp(x). Then V is a Thomason subset of

Spc(K). Moreover,
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TT Geometry- Take 3

Thomason Subsets and the Classifcation Thrm

Remember, our goal is to classify tt ideals of K. We need one final topological notion
before we can state the classification.

1. A Thomason subset V ⊆ X of a spectral topological space X is a subset of the form
V =

⋃
α Vα where each Vα is closed with quasi-compact open complements.

2. Now recall, Spc(K) is spectral. So let V ⊆ Spc(K) be a Thomason subset, and let
KV = {x ∈ K : supp(x) ⊆ V}. It turns out this is a tt ideal.

3. Now let P ∈ Spc(K), and let V =
⋃
x∈P supp(x). Then V is a Thomason subset of

Spc(K). Moreover,

4. The two assignments above give an order preserving bijection between

Thom(Spc(K)) ↔ Thick⊗(K)
the Thomason subsets of Spc(K) and the set of tt ideals in K.

© David Rubinstein 56



Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!
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Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!

2. Suppose supp(x)= y1 t y2. Then x decomposes as x = x1 ⊕ x2 with supp(xi) = yi
(has applications to the Pickard Group of ⊗− invertible objects)
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Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!

2. Suppose supp(x)= y1 t y2. Then x decomposes as x = x1 ⊕ x2 with supp(xi) = yi
(has applications to the Pickard Group of ⊗− invertible objects).

3. Suppose supp(x)∩ supp(y) = ∅. Then we have HomK(x,y) = 0
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Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!

2. Suppose supp(x)= y1 t y2. Then x decomposes as x = x1 ⊕ x2 with supp(xi) = yi
(has applications to the Pickard Group of ⊗− invertible objects).

3. Suppose supp(x)∩ supp(y) = ∅. Then we have HomK(x,y) = 0
Now, recall that we noticed that Spc(K) is a "spectral space." It is a theorem that every
spectral space is isomorphic to Spec(R) for some commutative ring R. In any tt-category,
one can take the endomorphism ring of the unit, and get a commutative ring. So we might
ask,

1. Is Spc(K) ∼= Spec(EndK(1))?

2. Or more generally, is there a map Spc(K) → Spec(EndK(1)).
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Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!

2. Suppose supp(x)= y1 t y2. Then x decomposes as x = x1 ⊕ x2 with supp(xi) = yi
3. Suppose supp(x)∩ supp(y) = ∅. Then we have HomK(x,y) = 0

Now, recall that we noticed that Spc(K) is a "spectral space." It is a theorem that every
spectral space is isomorphic to Spec(R) for some commutative ring R. In any tt-category,
one can take the endomorphism ring of the unit, and get a commutative ring. So we might
ask,

1. Is Spc(K) ∼= Spec(EndK(1))?

2. Or more generally, is there a map Spc(K) → Spec(EndK(1)).

3. Thrm: There exist two natural continuous maps

3.1 ρK : Spc(K) → Spec(EndK(1)).
3.2 ρ•K : Spc(K) → Spech(EndK(1)).
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Some Consequences of Spc

Applications

Before we provide some of the more classical examples of classifications, let us give some
consequences of this notion of Spc.

1. Let 〈x〉 denote the tt ideal generated by an object x ∈ K. Then we have that y
∈ 〈x〉 ⇐⇒ supp(y) ⊆ supp(x)!!

2. Suppose supp(x)= y1 t y2. Then x decomposes as x = x1 ⊕ x2 with supp(xi) = yi
3. Suppose supp(x)∩ supp(y) = ∅. Then we have HomK(x,y) = 0

Now, recall that we noticed that Spc(K) is a "spectral space." It is a theorem that every
spectral space is isomorphic to Spec(R) for some commutative ring R. In any tt-category,
one can take the endomorphism ring of the unit, and get a commutative ring. So we might
ask,

1. Is Spc(K) ∼= Spec(EndK(1))?

2. Or more generally, is there a map Spc(K) → Spec(EndK(1)).

3. Thrm: There exist two natural continuous maps

3.1 ρK : Spc(K) → Spec(EndK(1)).
3.2 ρ•K : Spc(K) → Spech(End•K(1)).

Moreover, these maps are very often surjective. We call these maps the comparison
maps, and we will make use of them shortly.
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Derived Category of a (nice enough) Scheme

Reproducing a Scheme

1. Thrm (Thomason, Neeman): Let X be a quasi-compact, quasi seperated scheme, and
let K = Dperf(X) be the derived category of perfect complexes. Then the Spectrum
of K is isomorphic to the underlying scheme itself |X| via a homeomorphism
|X| ∼−→ Spc(Dperf(X)) given by:

© David Rubinstein 63



Derived Category of a (nice enough) Scheme

Reproducing a Scheme

1. Thrm (Thomason, Neeman): Let X be a quasi-compact, quasi seperated scheme, and
let K = Dperf(X) be the derived category of perfect complexes. Then the Spectrum
of K is isomorphic to the underlying scheme itself |X| via a homeomorphism
|X| ∼−→ Spc(Dperf(X)) given by:

x→ P(x) = {Y ∈ K : Yx ∼= 0}

where P(x) is the kernal of the residue field functor Dperf(X) → Db(k(x)) for each
point x.

© David Rubinstein 64



Derived Category of a (nice enough) Scheme

Reproducing a Scheme

1. Thrm (Thomason, Neeman): Let X be a quasi-compact, quasi seperated scheme, and
let K = Dperf(X) be the derived category of perfect complexes. Then the Spectrum
of K is isomorphic to the underlying scheme itself |X| via a homeomorphism
|X| ∼−→ Spc(Dperf(X)) given by:

x→ P(x) = {Y ∈ K : Yx ∼= 0}

where P(x) is the kernal of the residue field functor Dperf(X) → Db(k(x)) for each
point x.

2. Affine Case: In particular, suppose A is a commutative ring, and let X = Spec(A) be
an affine scheme. Then we get Spc(Dperf(A)) ∼= Spec(A) (such a result also holds if
A is commutative- graded, by replacing Spec(A) with Spech(A) the homogeneous
spectrum)
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Derived Category of a (nice enough) Scheme

Reproducing a Scheme

1. Thrm (Thomason, Neeman): Let X be a quasi-compact, quasi seperated scheme, and
let K = Dperf(X) be the derived category of perfect complexes. Then the Spectrum
of K is isomorphic to the underlying scheme itself |X| via a homeomorphism
|X| ∼−→ Spc(Dperf(X)) given by:

x→ P(x) = {Y ∈ K : Yx ∼= 0}

where P(x) is the kernal of the residue field functor Dperf(X) → Db(k(x)) for each
point x.

2. Affine Case: In particular, suppose A is a commutative ring, and let X = Spec(A) be
an affine scheme. Then we get Spc(Dperf(A)) ∼= Spec(A) (such a result also holds if
A is commutative- graded, by replacing Spec(A) with Spech(A) the homogeneous
spectrum)

3. Moreover, one can always equip Spc(K) with a sheaf of commutative rings, and in
this case one recovers the structure sheaf of X, OX
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Derived Category of a (nice enough) Scheme

Reproducing a Scheme

1. Thrm (Thomason, Neeman): Let X be a quasi-compact, quasi seperated scheme, and
let K = Dperf(X) be the derived category of perfect complexes. Then the Spectrum
of K is isomorphic to the underlying scheme itself |X| via a homeomorphism
|X| ∼−→ Spc(Dperf(X)) given by:

x→ P(x) = {Y ∈ K : Yx ∼= 0}

where P(x) is the kernal of the residue field functor Dperf(X) → Db(k(x)) for each
point x.

2. Affine Case: In particular, suppose A is a commutative ring, and let X = Spec(A) be
an affine scheme. Then we get Spc(Dperf(A)) ∼= Spec(A). (such a result also holds if
A is commutative- graded, by replacing Spec(A) with Spech(A) the homogeneous
spectrum)

3. Moreover, one can always equip Spc(K) with a sheaf of commutative rings, and in
this case one recovers the structure sheaf of X, OX

4. There are generalizations of these to (nice enough) stacks and singularity categories a
la Stevenson. They are beyond my current knowledge however.
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Stable Module Category

Support Varieties

Let G be a finite group and k be a field of charactersistic p dividing the order of G. Then
consider K =stab(kG) the category of finite dimensional kG-modules, and recall that we
can identify stab(kG) as the Verdier quotient stab(kG) ∼= Db(kG)/Dperf(kG) (see my last
talk)

© David Rubinstein 68



Stable Module Category

Support Varieties

Let G be a finite group and k be a field of charactersistic p dividing the order of G. Then
consider K =stab(kG) the category of finite dimensional kG-modules, and recall that we
can identify stab(kG) as the Verdier quotient stab(kG) ∼= Db(kG)/Dperf(kG) (see my last
talk)

1. There is a homeomorphism between the spectrum of K and the projective support
variety of G, Spc(stab(kG)) ∼= Proj(H•(G,k)).
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Stable Module Category

Support Varieties

Let G be a finite group and k be a field of charactersistic p dividing the order of G. Then
consider K =stab(kG) the category of finite dimensional kG-modules, and recall that we
can identify stab(kG) as the Verdier quotient stab(kG) ∼= Db(kG)/Dperf(kG) (see my last
talk)

1. There is a homeomorphism between the spectrum of K and the projective support
variety of G, Spc(stab(kG)) ∼= Proj(H•(G,k)).

2. Furthermore, this homeomorphism can be extended to a homeomorphism
Spc(Db(kG)) ∼= Spech(H•(G,k)) by adding exactly one closed point.
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Stable Module Category

Support Varieties

Let G be a finite group and k be a field of characteristic p dividing the order of G. Then
consider K =stab(kG) the category of finite dimensional kG-modules, and recall that we
can identify stab(kG) as the Verdier quotient stab(kG) ∼= Db(kG)/Dperf(kG) (see my last
talk)

1. There is a homeomorphism between the spectrum of K and the projective support
variety of G, Spc(stab(kG)) ∼= Proj(H•(G,k)).

2. Furthermore, this homeomorphism can be extended to a homeomorphism
Spc(Db(kG)) ∼= Spech(H•(G,k)) by adding exactly one closed point.

3. Rmk: The two above homeomorphisms hold for G a finite group scheme as well.
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Stable Homotopy Theory

The Original classification

Now, the initial tt Category was SHc and the classification of tt ideals in that case, in some
sense motivated this entire discussion. The classification in this case is a little more
complicated to state however, so let us first provide some context and notation to be used.
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Stable Homotopy Theory

The Original classification

Now, the initial tt Category was SHc and the classification of tt ideals in that case, in some
sense motivated this entire discussion. The classification in this case is a little more
complicated to state however, so let us first provide some context and notation to be used.

1. We will consider the "p-local Stable Homotopy category". This consists of objects in
SHc such that π∗(X)⊗Z(p)

∼= π∗(X). Denote this subcategory by SHcp. This is the
Bausfield Localization q : SHc → SHcp with respect to the Homology theory
π•(−)⊗Z(p)
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Stable Homotopy Theory

The Original classification

Now, the initial tt Category was SHc and the classification of tt ideals in that case, in some
sense motivated this entire discussion. The classification in this case is a little more
complicated to state however, so let us first provide some context and notation to be used.

1. We will consider the "p-local Stable Homotopy category". This consists of objects in
SHc such that π•(X)⊗Z(p)

∼= π•(X). Denote this subcategory by SHcp. This is the
Bausfield Localization q : SHc → SHcp with respect to the Homology theory
π•(−)⊗Z(p)

2. For each integer n ≥ 1 and prime p, there is a Homology theory, called Morava
k-theory, denoted as Kp,n : SHcp → Fp[vn, v−1n ] −Mod.
Let us denote Cp,n := q−1(ker(Kp,n)) and C0,1 to be the kernal of the rationalization
functor π•(−)⊗Q ∼= H•(−,Q) : SHc → SHcQ ∼= Db(Q)
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Stable Homotopy Theory

The Original classification

Now, the initial tt Category was SHc and the classification of tt ideals in that case, in some
sense motivated this entire discussion. The classification in this case is a little more
complicated to state however, so let us first provide some context and notation to be used.

1. We will consider the "p-local Stable Homotopy category". This consists of objects in
SHc such that π•(X)⊗Z(p)

∼= π•(X). Denote this subgcategory by SHcp. It turns out
this can be realized as a Bausfield Localization q : SHc → SHcp

2. For each integer n ≥ 1 and prime p, there is a Homology theory, called Morava
k-theory, denoted as Kp,n : SHcp → Fp[vn, v−1n ] −Mod.
Let us denote Cp,n := q−1(ker(Kp,n)) and C0,1 to be the kernal of the rationalization
functor π•(−)⊗Q ∼= H•(−,Q) : SHc → SHcQ ∼= Db(Q)

3. Recall the "comparison map" defined some slides ago: ρ : Spc(K) → Spec(EndK(1)).
In this case, the unit is 1 = S0 and EndK(S0) = Z
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Stable Homotopy Theory

The Original classification

Now, the initial tt Category was SHc and the classification of tt ideals in that case, in some
sense motivated this entire discussion. The classification in this case is a little more
complicated to state however, so let us first provide some context and notation to be used.

1. We will consider the "p-local Stable Homotopy category". This consists of objects in
SHc such that π•(X)⊗Z(p)

∼= π•(X). Denote this subcategory by SHcp. It turns out
this can be realized as a Bausfield Localization q : SHc → SHcp

2. For each integer n ≥ 1 and prime p, there is a Homology theory, called Morava
k-theory, denoted as Kp,n : SHcp → Fp[vn, v−1n ] −Mod.
Let us denote Cp,n := q−1(ker(Kp,n)) and C0,1 to be the kernal of the rationalization
functor π•(−)⊗Q ∼= H•(−,Q) : SHc → SHcQ ∼= Db(Q)

3. Recall the "comparison map" defined some slides ago: ρ : Spc(K) → Spec(EndK(1)).
In this case, the unit is 1 = S0 and EndK(S0) = Z

4. Then it turns out the Spectrum of SHc is given by pulling back this comparison map
ρK . The picture is as follows:
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Stable Homotopy Theory

The Original classification

C2,∞ C3,∞ · · · Cp,∞ · · ·

Spec(SHc) =

ρSHc

��

...
...

...

C2,n+1 C3,n+1 · · · Cp,n+1 · · ·

C2,n C3,n · · · Cp,n · · ·
...

...
...

C2,2 C3,2 · · · Cp,2 · · ·

C0,1

Spec(Z) = 2Z 3Z · · · pZ · · ·

(0)
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Stable Homotopy Theory

The Original classification

In the above picture, a line indicates that the higher prime is in the closure of the lower
one. We have more precisely:

1. The pre-image of the dense point (0) ∈ Spec(Z) is the single point C0,1
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Stable Homotopy Theory

The Original classification

In the above picture, a line indicates that the higher prime is in the closure of the lower
one. We have more precisely:

1. The pre-image of the dense point (0) ∈ Spec(Z) is the single point C0,1

2. For each prime p, the pre-image of pZ consists of the column Cp,n and where
Cp,∞ = ker(qp : SHc → SHcp).
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Stable Homotopy Theory

The Original classification

In the above picture, a line indicates that the higher prime is in the closure of the lower
one. We have more precisely:

1. The pre-image of the dense point (0) ∈ Spec(Z) is the single point C0,1

2. For each prime p, the pre-image of pZ consists of the column Cp,n and where
Cp,∞ = ker(qp : SHc → SHcp).

3. C0,1 is the unique dense point in Spc(SHc). For each prime p and integer 1 ≤ n 6= ∞
we have the closure {Cp,n} = {Cp,m : n ≤ m ≤∞}. The closed points of Spc(SHc)
are precisely the Cp,∞ for all p.
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Stable Homotopy Theory

The Original classification

In the above picture, a line indicates that the higher prime is in the closure of the lower
one. We have more precisely:

1. The pre-image of the dense point (0) ∈ Spec(Z) is the single point C0,1

2. For each prime p, the pre-image of pZ consists of the column Cp,n and where
Cp,∞ = ker(qp : SHc → SHcp).

3. C0,1 is the unique dense point in Spc(SHc). For each prime p and integer 1 ≤ n 6= ∞
we have the closure {Cp,n} = {Cp,m : n ≤ m ≤∞}. The closed points of Spc(SHc)
are precisely the Cp,∞ for all p.

4. The support of an object x is:

4.1 supp(x)= ∅ when x ∼= 0
4.2 supp(x)= Spc(SHc) when x /∈ C0,1
4.3 supp(x)= a finite union of "collumns" when x ∈ C0,1. More concretely, supp(x)=

finite unions of Cp,mp where Cp,mp := {Cp,n : mp ≤ n ≤∞} and wheremp is
the "type" of p.
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Stable Homotopy Theory

The Original classification

In the above picture, a line indicates that the higher prime is in the closure of the lower
one. We have more precisely:

1. The pre-image of the dense point (0) ∈ Spec(Z) is the single point C0,1

2. For each prime p, the pre-image of pZ consists of the column Cp,n and where
Cp,∞ = ker(qp : SHc → SHcp).

3. C0,1 is the unique dense point in Spc(SHc). For each prime p and integer 1 ≤ n 6= ∞
we have the closure {Cp,n} = {Cp,m : n ≤ m ≤∞}. The closed points of Spc(SHc)
are precisely the Cp,∞ for all p.

4. The support of an object x is:

4.1 supp(x)= ∅ when x ∼= 0
4.2 supp(x)= Spc(SHc) when x /∈ C0,1
4.3 supp(x)= a finite union of "columns" when x ∈ C0,1. More concretely, supp(x)=

finite unions of Cp,mp where Cp,mp := {Cp,n : mp ≤ n ≤∞} and wheremp is
the "type" of p.

5. The Thomason Subsets of Spc(SHc) are

5.1 the empty set and the whole space itself
5.2 Arbitrary unions of columns Cp,mp

6. A great way to think about each column is that it expresses a "chromatic refinement"
between the representing spectra HQ and HFp (ie, between the primes (0) and pZ).
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SH(G)

Recent work by Balmer-Sanders

1. The examples above, while providing a great conceptual framework that unifies
seemingly disjoint work, are more repackaging of old theorems rather than brave
new work.

2. In many of the cases in fact, computing Spc(K) is done by ALREADY knowing the tt
ideals of K. But we would like to do the reverse: Given a tt category K compute
Spc(K) from first principles, and then from that, DEDUCE the tt-ideals of K.
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SH(G)

Recent work by Balmer-Sanders

1. The examples above, while providing a great conceptual framework that unifies
seemingly disjoint work, are more repackaging of old theorems rather than brave
new work.

2. In many of the cases in fact, computing Spc(K) is done by ALREADY knowing the tt
ideals of K. But we would like to do the reverse: Given a tt category K compute
Spc(K) from first principles, and then from that, DEDUCE the tt-ideals of K.

3. Recent work by Balmer-Sanders (2017) does just that, for the case of SHc(G) for G a
finite group. They describe Spc(SHc(G)) as a set for all finite groups G, and get close
to completely describing the topology. Let us say a little about SHc(G), and then we
can give the statement of the theorem, and present an absolutely beautiful picture
after the fact.
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SH(G)

Recent work by Balmer-Sanders

1. The examples above, while providing a great conceptual framework that unifies
seemingly disjoint work, are more repackaging of old theorems rather than brave
new work.

2. In many of the cases in fact, computing Spc(K) is done by ALREADY knowing the tt
ideals of K. But we would like to do the reverse: Given a tt category K compute
Spc(K) from first principles, and then from that, DEDUCE the tt-ideals of K.

3. Recent work by Balmer-Sanders (2017) does just that, for the case of SHc(G) for G a
finite group. They describe Spc(SHc(G)) as a set for all finite groups G, and get close
to completely describing the topology. Let us say a little about SHc(G), and then we
can give the statement of the theorem, and present an absolutely beautiful picture
after the fact.

4. Recall the comparison map we have used a few times now
ρK : Spc(K) → Spc(EndK(1)). In this case, the endomorphism ring is the Burnside
Ring of G, EndK(1) ∼= A(G).
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SH(G)

Recent work by Balmer-Sanders

1. The examples above, while providing a great conceptual framework that unifies
seemingly disjoint work, are more repackaging of old theorems rather than brave
new work.

2. In many of the cases in fact, computing Spc(K) is done by ALREADY knowing the tt
ideals of K. But we would like to do the reverse: Given a tt category K compute
Spc(K) from first principles, and then from that, DEDUCE the tt-ideals of K.

3. Recent work by Balmer-Sanders (2017) does just that, for the case of SHc(G) for G a
finite group. They describe Spc(SHc(G)) as a set for all finite groups G, and get close
to completely describing the topology. Let us say a little about SHc(G), and then we
can give the statement of the theorem, and present an absolutely beautiful picture
after the fact.

4. Recall the comparison map we have used a few times now
ρK : Spc(K) → Spc(EndK(1)). In this case, the endomorphism ring is the Burnside
Ring of G, EndK(1) ∼= A(G).

5. Remember we remarked that the computation of Spc(SHc) provided a "refinement"
between the primes at (0) and pZ- we get a similar refinement of the spectrum of
A(G) in this case as well.
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SH(G)- Take 2

Spc(SHc) as a set.

1. Thrm: All G-equivariant primes are obtained by pulling back non-equivariant
primes via geometric fixed point functors with respect to the various subgroups
H 6 G. Moreover, there is no redundancy, in the sense that the primes
P(H,p,n) = P(H ′,p ′,n ′) iff H is conjugate to H ′ and the chromatic primes
Cp,n = Cp ′ ,n ′ coincide in SHc (where P(H,p,n) := (ΦH)−1(Cp,n) are the pulled
back primes in SHc by the "geometric fixed point functor").
If K�H has nonzero index then P(K,p,n+ 1) ⊆ P(H,p,n) for every n ≥ 1. There is
no inclusion P(K,q,n) ⊆ P(H,p,m) unless the Chromatic primes are included,
Cq,n ⊆ Cp,m and K is conjugate to a q-subnormal subgroup of H.
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SH(G)- Take 2

Spc(SHc) as a set.

1. Thrm: All G-equivariant primes are obtained by pulling back non-equivariant
primes via geometric fixed point functors with respect to the various subgroups
H 6 G. Moreover, there is no redundancy, in the sense that the primes
P(H,p,n) = P(H ′,p ′,n ′) iff H is conjugate to H ′ and the chromatic primes
Cp,n = Cp ′ ,n ′ coincide in SHc (where P(H,p,n) := (ΦH)−1(Cp,n) are the pulled
back primes in SHc by the "geometric fixed point functor").
If K�H has nonzero index then P(K,p,n+ 1) ⊆ P(H,p,n) for every n ≥ 1. There is
no inclusion P(K,q,n) ⊆ P(H,p,m) unless the Chromatic primes are included,
Cq,n ⊆ Cp,m and K is conjugate to a q-subnormal subgroup of H.

2. This completely describes the topology for groups of square free order. For example,
the following picture is the spectrum of SH(Cp).
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Spc(SH(Cp))

SH but on Steroids

ρSH(Cp)c

��

Spec(SH(Cp)
c) =

Spec(A(Cp)) =

P(1,p,∞)

P(1,p,2)

P(1,p,3)

P(1,p,4)

P(1,p,5)

•◦
•◦
•◦
•◦

...
•◦ P(Cp ,p,∞)

P(Cp ,p,2)

P(Cp ,p,3)

P(Cp ,p,4)

P(Cp ,p,5)

•◦
•◦
•◦
•◦

...
•◦

P(1,q,n) ...
(q 6=p,n≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

. . .

. . .

. . .

. . .

. . .

P(Cp ,q,n) ...
(q 6=p,n≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

. . .

. . .

. . .

. . .

. . .

•◦ •◦
P(1,0,1) P(Cp ,0,1)

︸︷︷︸
_

��

p(1,p)=p(Cp ,p)

GH#

p(1,q) ...
(q 6=p)

•◦ •◦ •◦ •◦ . . .
p(Cp ,q) ...

(q 6=p)

•◦ •◦ •◦ •◦ . . .

•◦ •◦
p(1,0) p(Cp ,0)
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