Math 100 HW 1

David Rubinstein

August 31, 2021

Section 1.1

Q10) We are asked to find $\{x \in \mathbb{R} : cos(x) = 1\}$ Note that cos(x)=1 iff $x = 2k\pi$ Thus are list will be $\{\ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi \ldots\}$

Q16) We are asked to find $\{6a + 2b: a, b \in \mathbb{Z}\}\$ There are a couple of ways of going about this: One way is to first simplify the expression. Note 6a+2b=2(3a+b). So right away we can see this list will only consist of even integers. The question is whether or not EVERY even number is in this list. We show it is: let n=2k be any even integer. Then n=6(0) + 2k so we see that n is in fact in this list (with a=0, b=k). So this set is really just every even integer. Thus the answer is $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$

Q26) We are given the set $\{\ldots, \frac{1}{27}, \frac{1}{9}, \frac{1}{3}, 1, 3, 9, 27 \ldots\}$ Note that all these are powers of 3. Therefore we get that this set is equal to the set $\{3^n : n \in \mathbb{Z}\}$

Section 1.2

Q2(g)) we are given that A= { π , e, 0} and B= {0,1} We are asked to find $A \times (B \times B)$. We will follow the order of operations and first do $B \times B$ (although, ask yourself if you think it matters which we do first). We get that $B \times B = \{(0,0), (0,1), (1,0), (1,1)\}$ Thus

$$\mathcal{A} \times (\mathcal{B} \times \mathcal{B}) = \{ (\pi, 0, 0), (\pi, 0, 1), (\pi, 1, 0), (\pi, 1, 1), (e, 0, 0), (e, 0, 1), (e, 1, 0), (e, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1) \}$$

Q8) We are asked to find $\{0,1\}^4$. Recall this means finding $\{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\}$ For convenience, let A= $\{0,1\}$. Then we will find A ×A twice:

indeed A $\times A = \{(0,0), (0,1), (1,0), (1,1)\}$ Thus

$$\begin{aligned} \mathcal{A} \times \mathcal{A} \times \mathcal{A} \times \mathcal{A} &= \{ (0,0,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), \\ (0,1,1,0), (0,1,1,1), (0,1,0,0), (1,0,1,1), \\ (1,0,1,0), (1,0,0,1), (1,0,0,0), (1,1,1,0), \\ (1,1,0,1), (1,1,0,0), (1,1,1,1), (0,1,0,1) \} \end{aligned}$$

Section 1.3

Q6) We want to find all the subsets of the set $\{\mathbb{R}, \mathbb{Q}, \mathbb{N}\}$ Each individual element considered as a set will be a subset: so we get the three subsets $\{\mathbb{R}\}, \{\mathbb{Q}\}, \{\mathbb{N}\}$. Now we can take combinations of the elements to get the remaining subsets $\{\mathbb{R}, \mathbb{Q}\}, \{\mathbb{R}, \mathbb{N}\}, \{\mathbb{Q}, \mathbb{N}\}, \{\mathbb{R}, \mathbb{Q}, \mathbb{N}\}$ and finally the empty set \emptyset . This gives us 8 subsets in total, or 2^3 subsets as expected.

Q16) We are asked to determine if the set $\{(x, y) : x^2 - x = 0\} \subseteq \{(x, y) : x - 1 = 0\}$. Call the first set A, and the second set B for convienence. Then recall $A \subseteq B$ iff every element of A is also an element of B. Yet note the element $(0,0) \in A$ yet $(0,0) \notin B$ so we conclude that $A \nsubseteq B$. As an aside, is $B \subseteq A$?

Section 1.4

Q6) We want to find the set $\mathcal{P}(\{1,2\}) \times \mathcal{P}(\{3\})$. We will do this step by step: first we find that $A=\mathcal{P}(\{1,2\}) = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$; second we find that $B=\mathcal{P}(\{3\})=\{\{3\}, \emptyset\}$ Taking their cartesian products we get

$$A \times B = \{ (\{1\}, \{3\}), (\{2\}, \{3\}), (\{1, 2), \{3\}), (\emptyset, \{3\}), (\{1\}, \emptyset), (\{2\}, \emptyset), (\{1, 2\}, \emptyset), (\emptyset, \emptyset) \}$$

Q18) We are asked to find $|\mathcal{P}(A \times \mathcal{P}(B))|$ and are told that |A| = m and |B| = n. The two relevant facts here are:

given a set C,
$$|\mathcal{P}(C)| = 2^{|C|}$$
 (1)

and that

given sets C and D,
$$|C \times D| = |C| \cdot |D|$$
 (2)

So if we can find the cardinality of $A \times \mathcal{P}(B)$, we can find the entire cardinality by doing 2 to that value. Indeed from (1) we have that $|\mathcal{P}(B)| = 2^n$ and from (2) we get that $|A \times \mathcal{P}(B)| = m \cdot 2^n$ Finally, using (1) again, we get that $|\mathcal{P}(A \times \mathcal{P}(B))| = 2^{m \cdot 2^n} = 2^m \cdot 2^{2^n}$

Section 1.5

Q2(e)) We are told that $B = \{1,3,5,7\}$ and $A = \{0,2,4,6,8\}$ and asked to find $B \setminus A$. This means we want all the elements of B that are not in A. However, notice that $A \cap B = \emptyset$ so there every element of B is not in A, and hence we get that $B \setminus A = B$.

Q2(h)) We are told that C= {2,8,4}, and A is as above, and are asked to find C \setminus A. Note that every element of C is also in A, so the set of all elements in C that are not in A is empty, in other words C \setminus A= \emptyset