Homework 8 Answers

David Rubinstein - Math 100 - Fall 2019

11.1-2) Let $A = \{1, 2, 3, 4, 5, 6\}$. Write the relation that represents division.

Solution: We have $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (1,3), (1,4), (1,5), (1,6), (2,4), (2,6), (3,6)\}$

11.1-4) They give you a diagram, and ask to identify A and R

Solution: We have $A = \{0, 1, 2, 3, 4, 5\}$. We also have $R = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 4), (4, 0), (3, 1), (1, 3), (1, 5), (5, 1), (2, 4), (4, 2)\}$

11.2-4) They give you a set A and relation R and ask if it is reflexive, transitive and symmetric.

Solution: It is all 3 lol. This is just definition hunting, so if you know the definition of reflexive, transitive, and symmetric, this is an easy verification.

11.2-14) Suppose R is a symmetric and transitive relation on a set A, and that there exists an $a \in A$ such that aRx for all x in A. Show that R is also reflexive.

Solution: Let $x \in A$. We have that aRx by assumption. Now R is symmetric so this implies we also have xRa. Finally since R is transitive we conclude that xRx, so R is reflexive.

(11.3-2) Let $A = \{a, b, c, d, e\}$. Suppose R is an Equivalence relation on A and R has two equivalence classes. Also suppose aRd, bRc, and eRd. Write out R as a set.

Solution: We have R is reflexive, transitive, and symmetric. Thus we can write R as $R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, d), (d, a), (b, c), (c, b), (e, d), (d, e), (a, e), (e, a)\}$

(11.3-6) There are 5 Equivalence relations on the set $A = \{a, b, c\}$

Solution: We get that the ER's are $R_1 = \{(a, a), (b, b), (c, c)\}$ $R_2 = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ $R_3 = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}$ $R_4 = \{(a, a), (b, b), (c, c), (b, c), (c, b)\}$ $R_5 = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}$

(11.3-10) Suppose R and S are equivalence relations on a set A. Show that $R \cap S$ is also an equivalence relation on A.

Solution: First assume $R \cap S = \phi$. Then it is vacuously an equivalence relation. Now assume $R \cap S$ is nonempty; we show it is reflexive, transitive, and symmetric. Indeed let $x \in A$. Then $xRx \wedge xSx$ so $x(R \cap S)x$. Now assume $(x, y) \in (R \cap S)$. Then since R and S are both ERs we have $(y, x) \in R$ and $(y, x) \in S$ so $(y, x) \in (R \cap S)$. Finally, we can show $R \cap S$ is transitive in exactly the same way, as we just showed it is reflexive and symmetric, using the fact that both R and S are ERs.

(11.4-2) List all the partitions on the set $A = \{a, b, c\}$.

Solution: We get that there are 5 partitions,

1.
$$\{\{a\}, \{b\}, \{c\}\}$$

- 2. $\{\{a,b\},\{c\}\}$
- 3. $\{\{a\}, \{b, c\}\}$
- 4. $\{a, c\}, \{c\}\}$
- 5. $\{a, b, c\}$

Note these partitions correspond to the equivalence classes of the equivalence relations we found on problem (11.3-6)

(11.5-4) Write the addition and multiplication tables for \mathbb{Z}_6

Solution: We first note that $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. We first compute the addition table.

+	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	$\overline{5}$	X	0	1	2	3	4	5
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	$\overline{3}$	4	$\overline{5}$	0	0	0	0	0	0	0
1	1	$\overline{2}$	$\overline{3}$	4	$\overline{5}$	$\overline{0}$	1	0	1	2	3	4	5
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

11.5-6) Suppose $\overline{a}\overline{b} = \overline{0}$ in \mathbb{Z}_6 . Is it necessarily true that $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$? What if $\overline{a}, \overline{b} \in \mathbb{Z}_7$?

Solution: If \mathbb{Z}_6 is is not true that one of $\overline{a}, \overline{b}$ must be 0, since, for example $\overline{23} = \overline{0}$. Howevever, suppose $\overline{ab} = \overline{0} \in \mathbb{Z}_7$. Then we know 7|*ab* and since 7 is prime we have that 7|*a* or 7|*b*, ie $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.

This relates to my question 3 on section 9 problems I sent you all, about zero divisors. We see that \mathbb{Z}_p behaves as we have intuition for, but \mathbb{Z}_n has some funky behavior.