Math 111A Worksheet 3 Fall, 2020

THIS WORKSHEET COVERS MATERIAL SIMILAR TO SOME HOMEWORK 2 (and
HW 3) PROBLEMS. I RECOMMEND WORKING THROUGH THIS WORKSHEET BE-
FORE ATTEMPTING THE HW PROBLEMS ON NORMAL SUBGROUPS AND HOMO-
MORPHISMS.

Goals

e Know the definition of a Group Homomorphism and its kernal and image
e Understand the definition of a normal subgroup, and investigate their significance

e Investigate the connections between kernal of a group homorphism, normal subgroups,
and the so called Quotient Groups

Introduction

We ended our discussion last week by providing some detailed computations involving Cosets
for the integers. We described the collection of all cosets, Z/nZ and hinted that it looked
familiar to another group. Once and for all, we answer what group it looked similar to, and we
make the similarity precise. Doing so involves first the definition of a Group Homomorphism-
an idea of fundamental importance to Group Theory. Any time we have a definition of
functions, whenever possible, we discuss the subset of objects that get “killed” (ie mapped
to 0) by the function. This leads us to our definition of a kernal of a group homomorphism-
and we will investigate some basic properties of kernals. In particular, we will show that
they are the prototypical example of so called normal subgroups (and in fact are the only
example of normal subgroups). Normal subgroups arise as the answer to the following two
questions:

1. Suppose (G, ) is a group. Then we will denote the set of LEFT cosets for H in G as
H\G. Note this looks different than the set of RIGHT cosets G/H. (We will see that
in the case we are most interested in, the collection of left and right cosets coincide,
so the most common notation will be G/H going forward). A typical coset looks like
aH for some a in G. Then a question one could ask is, can we put a group structure
on H\G by defining a product ® on the set of Left Cosets as aH @ bH := (a* b)H?

2. Suppose ¢ : G — H is a group homomorphism (to be defined below) between groups
G and H. What can we say about the elements g € G such that ¢(g) = ey? Does that
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form a subgroup, and if so does it have any further “structure?”

1 Products of Cosets and Normal Subgroups

Last week we I briefly went over the definition of the integers modular n, which I denoted
Z,, and described it as the set Z, = {0,1,...n — 1} where i is the equivalence class of the
number i subject to the equivalence relation ¢ = x mod n. This set can be rather simply
turned into an additive group by defining @+ b = a + b, after one checked that this addition
rule is well defined. After that section, we took an interlude into cosets in general, and then
did some concrete computations for left cosets for the integers Z. In particular, we considered
the subgroup nZ for an arbitrary n, and found that the collection of all left cosets for this
subgroup, which we denoted Z/nZ was a very simple set, Z/nZ = {0+Z,1+Z, ... (n—1)+7Z}
This set looks almost identical to the set Z,- and since we just went through the process of
showing that Z, is actually a group, a natural question one might ask is:

1. Is Z/nZ also a group?
Solution: Yes, Z/nZ is a group under the following addition rule: (a +Z) + (b+Z) =
(a + b) + Z. In making this definition, one must check however the following things:

(a)

If a+Z, and b+ Z are two left cosets, is (a + b) + Z again a left coset? (closure
axiom)

Solution: We shall come back to a full proof of this later, but first- explain why
the following “counter-example” is actually wrong.

Counter-Proof:
Consider Z/4Z = {0+ Z,1 + Z,2 + Z,3 + Z}. Then if we take the coset 2+ Z
and the coset 3 + Z and try to add them together in the rule defined above, we
would get (2+Z) 4+ (3+Z) = (24 3) + Z = 5 + Z which is not a left coset of
Z/4Z. Hence this operation is not closed, and does not turn Z/47Z into a group.

Think back to last week’s example where you showed that the cosets 3 + 2Z and
1 + 27 for the group Z where the same. Indeed we used the fact that cosets are
actually equivalence classes. So in defining addition this way, we again need to
check that our choice of coset representative is well defined (just like in the case
Zy,): Show this-
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Solution: Again assume a; + nZ = ay + nZ and by + nZ = by + nZ. Then you
must show that (a; + by) + nZ = (as + by) + nZ. Finish the proof:

(¢) Now that we have shown addition is well defined and closed, finish the proof that
Z/nZ is a group. (You may have done this in class, if so try and re-do it for
practice without looking at your notes)

Solution:

i. The Identity for the group is

2. In showing above that Z/nZ can be turned into a group, the real bulk of the work
is in showing that the product of 2 cosets is again a coset, and that the choice of
representative for the coset doesn’t matter. Do you think that it is always the case
that H\G can be turned into a group in this way? In other words, does the product
g H ® goH = (g1 * g2)H always turn H\G into a group? Jot down some thoughts
about why you think it is true, or try coming up with a counter example, or reason
why it would be false if you think it’s false

(a) Solution:

3. If you think the answer above is no, what distinguishes between the cases Z/nZ your
counterexample? The former could be turned into a group (Good!) while the later
could NOT be turned into a group (Bad!!)- what is the difference between these two
situations? Well, consider the following SUPER IMPORTANT THEOREM
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Thrm: Let N be a subgroup of G. Then G/N can be turned into a group (called the
Quotient Group) under the rule aN o bN = (ab)N if and only if gNg=! C N for all
gin G (ie, for each n € N, g € G, we have gng~' € N). Furthermore in this case

G/H = H\G (that is the set of left cosets equals the set of right cosets)

4. We call such subgroups Normal Subgroups and we denote them as N <IG. Ok cool-
so we have a new class of subgroups which would give us a new group, G/N to study-
that’s nice, we like groups here! A natural question to ask though is, when and how do
these groups appear? How would I check that such a subgroup is Normal? We will say
more about this next section, however, with this theorem above in mind let us prove:

(a)

Let (G, %) be an abelian group. Then for any subgroup H of G, the set of cosets
G/H is also an abelian group.

Solution: (Hint- The above theorem tells us when G/ H can be made into a group-
why is it guaranteed in this case? Then recall how we defined the group product
in G/H to conclude its abelian.)

Corollary to the above: Z/nZ is an abelian group (This is certainly the much
quicker way of proving Z/nZ is a group- but I believe the long way above is useful
because you get some working familiarity with how cosets “work”)

Solution: Explain why the above result gives us this:

2 Group Homomorphisms and Normal Subgroups

There’s a general “schema” in Mathematics that says the following: we are in the business
of constructing objects with certain properties (sets, groups, vector spaces, ect)- Once we
have constructed these objects, we then ask how they interact, ie, what sort of functions
are there between the objects. The functions we study between the objects should take into
consideration the structure that exists on our objects. Consider for example:

1. In Math 21 (or intro Linear Algebra class) and Math 117 (or Upper Div Linear Alg
course) we studied vector spaces. These were sets with an addition structure and a
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“scalar multiplication” structure- These structures were reflected in our definition of
“linear transformations”, Recall- A linear transformation 7' : V' — W between vector
spaces V,W is a function such that

(a) T(vy +v9) =T(vy) + T(vy) for all vy, v € V.
(b) T(rv) =rT(v) forallr e Rjv € V

We mentioned that the axioms for vector spaces actually made the set into an Abelian group
under addition- Condition (a) of linear transformation guarantees the function “plays nice
with” the addition in both V, and W. With this in mind, consider the definition below:

Def: Let (G,*) and (H,o) be two groups. Then a Group Homomorphism between
G and H is a function ¢ : G — H such that ¥(g1 * g2) = ¥(g1) 0 ¥(ga).

1. Rephrase the definition of a linear transformation between two vector spaces in terms
of group homomorphisms
Solution: Let V, W be vector spaces. Then they are both abelian groups under addi-
tion. Therefore a Linear Transformation T : V — W is

2. Consider the map 1 : Z — Z,, defined by ¢ (z) = T. Is this a group homomorphism?
Solution:

3. Prove or disprove the following: “All group homomorphisms between two finite groups
of the same cardinality are group isomorphisms”
Solution:

4. Suppose you want to construct a group homomorphism ¢ : Z,, — G from Z, to some
other group G. Then there is actually one more step you need to do than just showing
it splits up under the group operations. Keep in mind the steps needed in showing
that addition was well defined in Z,, and jot down your idea for what other step we
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need to show
Solution:

5. Explain why the following proof is Wrong: We show the function ¢ : Z — R?
defined by 1(z) = (z, 2) is a group homomorphism.
Solution: Indeed, we have that ¢)(1+1) = (1+ 1,14+ 1) = (2,2) and (1) + ¢ (1) =
(1,1) + (1,1) = (2,2). Since ¥(1 4+ 1) = (1) + (1) we have shown it is a group
homomorphism.

6. Come up with a function between two groups G,H that is NOT a group homomorphism.
Solution:

7. Challenge Problem: Let m,n € N. Take a guess about a sufficient condition for m and
n for there to exist a group homomorphism v : Z,, — Z,
Solution:

Again, this is all well and good, yet it seems maybe a bit disconnected from the first half of
this worksheet. The following definition is the bridge:
Def: Let ¢ : G — H be a group homomorphism. Then

1. The kernal of v is the subset of G ker(¢) ={g € G :¢(9) =en} C G

2. The image of ¢ is the subset of H im(y)) = {h € H : g € G with ¢(¢9) = h} C H, ie
the set of all objects in H hit by some object in G under ¥

Let us explain why this provides a bridge:
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1. Elementary lemma: Prove that ker(i) is always non-empty. More specifically, prove
that eq € ker(y)
Solution:

2. Prove that ker(¢)) and im(¢)) are subgroups of G and H respectively.
Solution:

3. Explain how the above definitions and results provide a connection between normal
subgroups and group homomorphisms.
Solution:

4. Consider the homomorphism ¢ : Z — Z,, defined above as example 3. Find ker(v)
and im(v)

Solution:

5. Explain how Z/nZ is related to the the example above
Solution:

This above example actually provides an explicit characterization of how the groups Z,, and
Z/nZ are related- Once we learn the “First Isomorphism” theorem next week, we can make
this relation explicit and clear. For now, let us show one final example, which shows that
every normal subgroup actually arises as the kernal of a group homomorphism. Remember
that we have already shown that kernals are normal subgroups- this gives the converse.
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1. Let N < G be a normal subgroup of G. Then recall that G/N can be made into a
group. Consider the function 7 : G — G/N defined as 7(g) = gN.

(a)

(b)

()

Show this is a group homomorphism.
Solution:

Find the kernal and image of this homomorphism.
Solution:

Explain how this example justifies the claim “Normal subgroups and kernals to
group homomorphisms are really the same thing”
Solution:

This map 7 : G — G/N is called the “natural projection map” for G onto G/N. Fuzzily
speaking what is happening in the group G/N is that we squish all of N to a single
point and look what is happening outside of N. The following example shows some of
the above vaguery in action.

2. Consider the additive abelian group R?, and let N = {(z,0) : * € R} (ie the x-axis).
Then since R? is abelian we get that N is normal.

(a)

Consider the projection map 7, : R* — R defined by m,(a,b) = b. That is
you project the element in R? onto its y-component. Show that this a group
homomorphism.

Solution:

Find ker(m,) and im(m,)
Solution: By definition, the kernal of 7, consists of all elements in R? whose y-

component is 0. In other words ker(m,) = {(x,0) : x € R} = N.
One can easily verify that im(m,) = R.

How do you think the two projection 7, : R*> — R and 7y : R? — R?/N are
connected? Under this connection, try and think of what the group R?/N “is”.
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That is, without proving anything, what group do you think R?/N should look
like.
Solution:

3. Challenge problem. You can get some interesting geometrical shapes in this fashion.
Again consider the additive Abelian group G=R, but now let N = Z. One can show
this is a subgroup, so is again normal.

(a) Figure out what geometric object G/N is. (Hint, it is a very familiar geometric
figure- This shows a rather neat fact that this familiar shape is actually a group
in its own right!)

Solution:

(b) Instead let G = R? and let N = Z* <R?. What is the geometric object G/N?
(this one is much trickier- but it’s still a very, very familiar shape)
Solution:
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