Math 111A Worksheet 5 Fall, 2020

Goals

Investigate the subgroup lattice of group

Determine how the subgroup lattice of a group relates to its quotient groups

Investigate what happens when you have a group isomorphism onto itself

Investigate the connections between the above items.

Introduction

Last week, we proved the very important “First Isomorphism Theorem” which gave us a way
to describe up to isomorphism the quotient group G/N for any normal subgroup N. This
isomorphism theorem can be viewed as the go to tool in the toolbox for actually determining
the structure of quotient groups. A couple of natural questions arise however:

1. Why do we want to determine the structure of the quotient group? How can we actually
use quotient groups?

2. Are the “structure” of the groups G and G/N related in any way?

3. Why is this theorem called the “First Isomorphism Theorem?” Are there other isomor-
phism theorems? If so, what are they, and how are they related to normal subgroups,
and group homomorphisms?

4. What about when we have a group homomorphism from a group to itself ¢ : G — G?
Is there anything unique we can say in this case?

The answer (or at least the first taste of an answer) for questions 1 and 2 will take up the
first two sections. We finish the worksheet by examining in detail a certain type of so called
group automorphisms. These, a priori, distinct homomorphisms actually have much to do
with our discussion of normal subgroups and quotient groups. In fact, they lead nicely into
an introduction on some stronger subgroups than normal subgroups, called Characteristic
subgroups.
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1 Quotient Groups and The Lattice of Subgroups

Recall from Worksheet 3, that if G is abelian, and N C G then N is automatically normal,
so we can form the quotient group G/N- but moreover, we have that G/N is abelian! That
is, the abelian structure of G is forced onto any quotient structure G/N.

1. Is this an if and only if? In other words is a group abelian if and only if the quotient
G/N is abelian for some normal subgroup of N? (Hint- take your favorite non-abelian
group and play around with some normal subgroups of it. Can you form an abelian
group out of it?)

2. In HW 3, you are asked to prove that the center of a group Z(G) is always normal- so
one can always form the quotient G/Z(G). This quotient is rather useful, and can be
used to determine if G is abelian. More specifically prove: If G/Z(G) is cyclic then
G is abelian.

3. Now every cyclic group is in particular abelian, so one could wonder, can we loosen our
requirements above and ask only that G/Z(G) be abelian? In other words, prove or
disprove the following claim. If G/Z(G) is abelian then G is abelian.

4. Here is an application of the above. Suppose G is a group of order o(G)=pq for some
distinct primes p and q. Suppose Z(G) is non trivial. Then prove G is abelian. (in fact,
one doesn’t even need the condition on the center, but we don’t have the tools to show
that yet).

Ok cool, so much of the information about the commutivity of the group product is encoded
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in the quotient group, and vice-versa. Now if you think back to worksheet 1 and 2- one of
the first topics we investigated after discussing abelian groups was subgroups. In particular
we described a criteria for determining if a given subset of a group is itself a group. Now
that we have built up this new group G/N from the group G, a reasonable question to ask is,
are the subgroups of G/N in any way related to the subgroups of G? Throughout the next
few problems, let G be a group, N <G and recall the natural projection map = : G — G/N.

1. Let H < G be a subgroup containing N. (N C H). Prove that the image of H
m(H) € G/N is a subgroup of G/N.

3. Show that the above two problems give a (mutually inverse) bijection
{H<G:NCH}+— {H<G/N}

That is, there is a bijection (1-1 correspondence) between the subgroups of G that
contain N and all of the subgroups of G/N.

4. The book expresses this in a different way. Remember, the first isomorphism theorem
tells us that, if we're given a surjective group homomorphism f : G — G’ then we get
an isomorphism G/ker(f) = G’. Also remember (from last worksheet for example)
that kernals of group homomorphisms and normal subgroups are the same thing. So
classifying subgroups of G’ (as the book does) is the same thing as classifying subgroups
of G/ker(f) (or equivalently G/N for any normal subgroup) that we have just done
above.

It is hard to overstate the importance of this result above. One of the main tasks in under-
standing a group is to understand all possible subgroups of our group. This result above tells
us that our determining the subgroups of G can be made easier by finding the subgroups
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of G/N for some normal subgroup, and vice-versa. In words, given a normal subgroup of
N, rather than finding all subgroups that contain N, one must only find the subgroups of
G/N (which is often much simpler as G/N is literally a smaller group). It turns out this
correspondence above preserves even more “structure” than just the amount of subgroups:

The following points are the content of the so called “4th Isomorphism Thrm” (see the
next section for the 2nd and 3rd isomorphism Thrm).

Fix G a group, N <G and let A, B < G with N C A, N C B. Denote A = A/N,B = B/N
as in the correspondence above. Then

1. AéBifandonlyifZéE
2. If A < B then [B:A]=[B : A]. In particular (if B=G) [G : A] = [G : A]
3. ANB=ANB

4. AﬂGifandonlyifZﬁ@

Let us see this in action with the following so called subgroup diagram or lattice of Z15. The
way to read this diagram is as follows:

1. The top of the diagram is the whole group
2. The very bottom of the diagram is just the identity

3. Everything in between represents subgroups of G. If there is a line from one subgroup
UP to another subgroup that means the subgroup below is contained in the one above
it.

4. The numbers in between the groups represent the index of the below subgroup inside
the larger subgroup.

Ok, so recall that Zis is a cyclic group of order 12, so we know there is precisely one
subgroup for every integer that divides 12. Hence there will be precisely one subgroup of
order 1,2,3,4,6,12. Let us draw this below.
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In words, we have the subgroups generated by 2 (of order 6), 3 (of order 4) , 4, (of order 3), and 6
(of order 2) respectively. The numbers in between the subgroups again represent the index:
for example the subgroup (6) has index 3 inside (2) (use LaGrange’s thrm if you don’t believe
me).

Now, we have that Z,, is an abelian group, so every subgroup is normal. In particular let

us take the subgroup (4) < Z;, and consider the quotient group Zis/(4). Now the point is,
the theorem tells us exactly what the subgroups of Z5/(4) are! They will be precisely those
subgroups that contain 4. From the perspective of the diagram, all we need to do is “look
above (4)” and see what subgroups lie above it. Using this, we can draw the entire subgroup
diagram of Zy,/(4).

The only non-trivial subgroup of Z,/(4) is (2)/(4) since the only subgroup that contains

(4) is (2)!

The other important fact to note is that the index of the subgroups did not change! Indeed
this is part 2 of the theorem above!

Ok, now it is your turn!

1. Draw the subgroup diagram for Z;5/(6) and include the index of each subgroup.
Solution:
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Z12/(6)

(6)

2. Draw the subgroup diagram now for Zsg. You can mimic what I did for drawing the
subgroup diagram for Zj,. (Think of all the integers that divide 30- there will be
exactly 1 subgroup of that order for each integer). Make sure to include the index of
each subgroup.

Solution: I will start it off for you- fill in the rest.

ZSO

3. Use the subgroup diagram you made above for Zjs, to find all subgroups (and the index
of each subgroup in the other) for the quotient group Zso/(15).

Z0/(15)
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2 The Second and Third Isomorphism Theorems

Last week we investigated the so called ”First Isomorphism Theorem“ and worked through
some of its consequences. The section above demonstrates the powerful ” Fourth Isomorphism
Theorem “ So what gives? What about the second and third you ask? Well- you are actually
asked to Prove the Second Isomorphism Theorem for your homework- let me state it here:

Second (or Diamond) Isomorphism Theorem: Let N < G and H < G any subgroup. Then

we have N I NH, NN H < H and we have an isomorphism NH/N = H/(N N H). It has

the name diamond isomorphism theorem because of the following diagram. (as the theorem
implies that the index of N N H inside H is equal to the index of N inside NH)

G

NH

=\

N~ H

\ _/
/

NNH

N
1

I will not say much about this theorem since it is slightly unrelated to the topics at hand
now, but needless to say it will make an appearance again at some point for us. I want to
address the 3rd isomorphism theorem however, because that has some connections to the
discussion in the previous section.

1. Look back to the 4 points of the 4th iso theorem I mentioned on page 3. Specifically,
focus on point number 4.

2. This says that if K <G is some normal subgroup of G then K <G (recall K = K/N)

3. Now- any time we have a normal subgroup, we should try and take the quotient of it.
So, given a normal subgroup N C K < G we can take the following two quotients

(a) G/K and
(b) G/K
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4. Do you think there is any relationship between the two quotient groups above??

5. The third isomorphism theorem is a slight generalization of the above: Rather than
state it here, let me set it up and let’s see if you can guess what the statement of the
theorem is.

Solution: Let H <G and K <G with H C K. Then the third isomorphism theorem
tells us the following 2 things:

(a) Fill in first part of it here

3 Group Automorphisms

One of the first groups we considered was the collection of all bijective functions on a set
S, A(S). Now we have a more "sophisticated“ notion of what the functions we should be
studying are in this case- namely group homomorphisms! So we should like to define the
collection of bijective group homomorphisms of a group onto itself- the goal is to then show
this actually forms a group, and investigate what information it tells us about the underlining
group itself.

1. Let G be a group. Then denote Aut(G) = {¢ : G — G : ¢ is a group isomorphism}.
(We call a group isomorphism from a group back to itself a group automorphism, hence
the name Aut(G))

(a) Show that Aut(G) is a group! I haven’t told you even the group product- what
do you think the product should be that makes this into a group?
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Solution:

(b) Great so Aut(G) is always(!) a group, regardless of what the group G is. But if
we didn’t have any systematic way of determining what the elements of Aut(G)
are, then it would be a pretty useless group. Luckily for us, we have already seen
a huge class of group automorphisms.

i.

ii.

111.

Let G be a group of order larger than 2, and let h € G not equal to the
identity. Define a function f, : G — G by fi(g) = h~lgh. Show that this
function is :

A. A group homomorphism.

C. A surjective homomorphism!(hint- the h is fixed, and you want to show fj,
maps onto any element g in G. Pick a clever ¢’ € G such that f,(¢') = g)

This automorphism above is called conjugation by element h and it turns up
everywhere! Think about the condition on H being a normal subgroup for
example- or think back to Matrices being similar if you like Linear Algebra.

Let us now investigate what happens if we try and conjugate for different
elements g. (A priori, we get a different function f, for any different choice
of g. Do you think that actually is the case?)

A. Let G now be an abelian group. What is the function f, for any choice
of h?

B. Let G again be any group (not neccessarily abelian), and remember the
center of the group is defined to be all the commuting elements of G,

Z(G) ={h € G: hg=ghforal g € G}. Now let y € Z(G). What is
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the function f,?

¢) Let us now combine everythin we have learned with this one last, really COOI,
g
problem!

i. Let G be any group (of order greater than 2). Let Inn(G) = {f,:h € G} C

ii.

Aut(G) (where fj, is the conjugation function defined above). Prove that
Inn(G) < Aut(G) is a subgroup. (We call the set of all conjugations Inner
automorphisms- explaining the notation Inn(G))

Define a function ¢ : G — Inn(G) as ¥(g) = f, (the output is again a
function, it’s a little weird). Show

A. This map ¢ : G — Inn(G) is actually a group homomorphism! (hint,
show that fo, = fy0 fa)

phic to.

E. Look back at the work on page 2, problem 2 and 3. (I told you
everything in this class is connected!) In fact, we can now prove an
even stronger claim. As a challenge problem prove that if Aut(G) is a
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cyclic group, then G is abelian! (hint, use subgroups of cyclic groups are
cyclic, and problem 2 on page 2)

2. We are now in a position where we can define the second important class of subgroups
of a group G. We shall see they are very much connected to Normal subgroups, and
will play a star role in the next few weeks with our discussion of the Sylow Theorems.

(a)

Let us first clear up a common misconception about Normal subgroups. Prove or
give a counter example to the following claim: Let H, K < G be subgroups
of G such that H < K <G (H is normal in K and K is normal in G). Then H is
normal in G.

We bring up the above for a reason. First, we can now define this second class
of important subgroups. We say a subgroup H < G is a Characteristic
Subgroup of G if H is fixed by every automorphism of G. (That is,
given ¢ € Aut(G),v(H) = H). We denote such an H by H char G. This looks
like a funky definition. Let us show that this is a fairly natural consideration.

i. Let H char G. Show that H is a normal subgroup of G. (Hint, think about
the defining characterization on being normal- what did we just show about
that in the above discussion?)

ii. Is the reverse true? Are all normal subgroups characteristic subgroups? What
do you think?

iii. The importance of these subgroups is partially explained in the following.
In words, the following states that characteristic subgroups fix the lack of

transitiveness of normal subgroups.
Show that if H char K char G then H char G. As a consequence, if K <G
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and H char K then H < G.
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