
Math 111A Worksheet 1 Fall, 2020

THIS WORKSHEET COVERS MATERIAL SIMILAR TO SOME HOMEWORK 1
PROBLEMS. I RECOMMEND WORKING THROUGH THIS WORKSHEET BEFORE
ATTEMPTING THE HW PROBLEMS ON COSETS.

Goals

• Regain familiarity with Set Theory

• Investigate the axioms of groups

• Recognize and create sets with a product that are not groups

• Explore the concept of Abelian groups and some of their basic properties

• Distinguish between subgroups and subsets that aren’t subgroups

Introduction

Group theory is a very ”formal” subject. That is, we will be able to deduce a lot of general
results from some very specific ”axioms” (ie, rules). The language of much of group theory
will be that of Sets: so we will begin with some review of being able to read sets, and make
sure we are all comfortable with the notations in set theory. Then we will review the axioms
of groups again- and we will investigate why those are the axioms, and give some examples
of sets that do not satisfy the axioms. We will finish by investigating a particular type of
group, an abelian group. These are special groups that have one further axiom.

1 Set Theory Review

In this course, much of the groups we will be studying will be described using the language
of sets. Let us review what a set is and how we read them in English.
A Set is by definition just a collection of objects. The point of set theory notation is to
succinctly describe in a formal language these collection of objects. Recall, the way this
looks is as follows:

{A : B}
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What this means in English is, ”The set of A such that B.” Let us do some examples where
I provide you with a set, and you describe what the collection of objects are in English,
without using formal logical symbols.

1. {x ∈ Z : 2x > x}.
Solution: This set is the collection of all integers such that 2x is greater than x. More
succinctly, this is the collection of all positive integers.

2. {x ∈ R : |x| ≥ 1}.
This is the set of all real numbers greater than or equal to 1 and less than or equal to
negative 1.

3. {
(
a b
c d

)
: a, b, c, d ∈ R and ad− bc 6= 0}

This is the set of all invertible 2x2 matrices (or, if you forgot that result, is the set of all
two by two matrices with nonzero determinant).

Now let us do the reverse: I am going to describe in English a few collection of objects and I
want you to write what these collections are using the notation and language of Set Theory.
Note: there may be many correct ways to write what these are in set notation.

1. All Real numbers greater than twice pi.
Solution: {x ∈ R : x > 2π}

2. All rational numbers with denominator 2.
{a
2

: a ∈ Z}

3. All two by two matrices with real coefficients that are invertible.

{
(
a b
c d

)
: a, b, c, d ∈ R and ad− bc 6= 0}

2 Axioms of Groups

In this section we are going to review what the ”axioms” of groups are. Recall from your
textbook that a Group is a Set G, along with a rule to combine two objects in your set which
we call a product ∗ such that this product has the following properties:

1. If a,b ∈ G then a ∗ b ∈ G (closure axiom)
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2. For a,b,c ∈ G we have a∗(b ∗ c) = (a ∗ b) ∗ c (associative axiom)

3. There exists an element e ∈ G such that a∗e = e∗a = a for any a ∈G (identity axiom)

4. For every a ∈ G there exists an element (written a−1) such that a ∗ a−1=a−1 ∗ a = e
(the inverse axiom)

That is, the total data of a group consists of 6 things. First, a set G. Second, a way to
combine objects in the set. And then the 4 rules placed on that way to combine objects.
The first axiom assures us our rule for combining objects is well defined. The second axiom
tells us it doesn’t matter how we combine our objects together, so long as the order we
combine them remains the same. The third and fourth are a little more subtle- combined
they make it so we can ”undo” our rule for combining objects in the set.

Let us now recall some examples of groups. For all the following we will write them as
(Set, product) In each case write what the identity and inverse elements are.

1. (Z,+)- ie the set of all integers with product being addition

(a) Identity= 0

(b) Inverse: Let a ∈ Z. Then a−1 = −a

2. Let S be any set, and let A(S) be the set of all bijective functions on this set (recall
bijective means the function is onto and 1-1). Then (A(S), ◦) is a group where ◦ is
function composition.

(a) Identity= The identity map- the map i : S → S defined by i(s)=s for all s in S.

(b) Inverse: Let f ∈ A(S). Then f−1 = the inverse function f−1 : S → S defined as
f−1(b) = a when f(a)=b.

3. LetM3×3(R) denote the set of all 3x3 matrices with real coefficients. Then (M3×3(R),+)
is a group where + is the normal addition of matrices.

(a) Identity= The so called 0 matrix

0 0 0
0 0 0
0 0 0


(b) Inverse: Let m ∈ M3×3(R). Then m−1 = the matrix where each component is

the negative of the corresponding component of m. That is, if m = (aij) them
m−1 = (−aij)

4. (Q−{0},×)- ie the set of all rational numbers besides 0, with product being multipli-
cation.
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(a) Identity= The number 1

(b) Inverse: Let a
b
∈ (Q− {0}). Then (a

b
)−1 = b

a

As we will see, there are many many more examples of groups. It is often however, just
as illuminating in determining when a given set with a product on it is NOT a group. Let
us consider some examples: In each of the following determine why the following set with
product is NOT a group. In some cases, there might be more than one reason, if so try to
list as many reasons as possible.

1. (Z,×).
Solution: This fails to be a group because, for any integer not equal to ±1 there is no
inverse. For example, 2∈ Z but 2−1 /∈ Z. Notice this example shows why it is required
to say what the product on your set is. Z is a group under addition, but it is NOT a
group under multiplication.

2. Let S=the set off all odd integers. Then (S,+) is not a group.
Solution: (S,+) is not a group because it is not even closed under addition. For
example, 3 and 5 are in S, but 3+5=8 is not in S.

3. Let S={m ∈ M2×2(R) : det(m) = 0} (ie, all 2x2 matrices whose determinant is 0).
Then (S,×) is not a group. (where again, × is the typical matrix multiplication
operation).
Solution: (S,×) is not a group because there are no invertible matrix in this set. The
condition on the set, det(m)=0 means that m is not invertible.

4. Come up with some other set S and operation on that set that is not a group. Get
creative, your set and product can be as funky as you want.
Solution:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Abelian Groups

Note in the rules for groups, we did not require that a ∗ b = b ∗ a. In fact, in many cases
we do not have such a result. We call a Group that DOES satisfy a ∗ b = b ∗ a for any two
objects a,b an Abelian Group. Abelian groups are very ”nice” in that they behave more like
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addition of numbers in the way we are familiar. Let us consider again the 4 examples of
groups we gave above. Decide which of them are abelian and which are not.

1. (Z,+)
Solution: This is an abelian group. The order in which you add two integers does not
matter: x+y=y+x for any two integers x,y.

2. Is (A(S), ◦) an abelian group?
Solution: A(S) is not an abelian group because function composition is rarely commuta-
tive. For example, let S = R and consider f(x)=x+2 and g(x)=10x. Then f, g ∈ A(S)
but f ◦ g(x)= f(10x)=10x+2 while g ◦ f(x)= g(x+2)=10(x+2)=10x+20

3. Is (M3×3(R),+) an abelian group?
Solution: Yes this is an abelian group- since we defined addition componentwise, and
(R,+) is an abelian group. More concretely, if m1 = (aij) and m2 = (bij) we defined
the matrix m1 +m2 = (aij + bij) = (bij + aij) = m2 +m1

4. Is (Q− {0},×) an abelian group?
Solution: Yes, since multiplication of integers is commutative. That is a1

b1
× a2

b2
=

a1×a2
b1×b2

= a2×a1
b2×b1

= a2
b2
× a1

b1

There is one more example of an abelian group we already have some familiarity of actually.
Let V be a real vector space (in fact it is unimportant what ”field” you take the vector space
over)- then part of the axioms for V require that it is an abelian group under addition. So
we have actually studied abelian groups in that context!

I mentioned abelian groups behave more like addition of real numbers. Let us give one
example along these lines.

1. Let x,y,z ∈ R. Assume that x+y=y+Z. Then x=z.

Solution: First, note that (R,+) is an abelian group, so we have that y+z=z+y. Thus,
since x+y=y+z by assumption, we have that x+y=z+y. Now add y−1 = −y on the right
to both sides of the equation. This gives us x+y-y=z+y-y. Since y-y=0 is the identity
for the group (R,+) we get x=x+0=z+0=z as desired.

2. Prove or give a counter-example to the following statement: Let (G, ∗) be a group. Then
if x ∗ y = y ∗ z for some objects x,y,z in G we must have x=z.
Solution: This is false. Consider the group G = S3 and consider x=(12), y=(123) and
z=(23)
Then xy=(13) and yz=(13) yet x 6= z
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3. Prove or give a counter-example to the following statement: Let (G, ∗) be an ABELIAN
group. Then if x ∗ y = y ∗ z for some objects x,y,z in G we must have x=z.
Solution: This is true. We can mimick the proof of 1 exactly in this case. The key point
is being able to change y ∗ z = z ∗ y so we can multiply on the right to both side y−1 to
cancel out the y. We could not do that in part 2 for example since S3 is not abelian.

4 Subgroups

Our goal in this course is to properly understand those sets that can be made to satisfy the
axioms of a group. There is a common theme in mathematics that in order to understand
an object with a given property, you look at the smaller objects contained in it (that also
satisfy the property you are studying) and study those smaller objects with the hope to get
some insight into the larger object. This is all rather vague, so let’s make this precise with
the definition of subgroups.

We have defined a group as a set with an operation (G, ∗)- now remember one can talk
about subsets of a set- so a natural question arises: If S ⊂ G is a subset of G, when is (S, ∗)
also a group? We call such subsets ”subgroups.” (think back to when you studied vector
spaces and ”subspaces”)

One could of course check the long way, and just make sure all the 4 axioms are satis-
fied for (S, ∗)- however, it turns out that knowing that S is contained in a a group shortens
our work into the following:

Let (G, ∗) be a group- A subset H ⊂ G is a subgroup if and only if it is closed under
products and inverses (ie, if x, y ∈ H then both x ∗ y and x−1 ∈ H). One of our main goals
in the beginning of this course will be to study a couple of particular subgroups that exist
for every group. For right now however, let’s just gain some familiarity in being able to
recognize when subsets are subgroups.

1. Let 2Z= the set of all integer multiples of 2 (ie, even numbers). Is 2Z a subgroup of
(Z,+)?
Solution: We just need to show the two conditions listed above. Let x=2l and y=2k
for integers l,k. Then x+y=2l+2k=2(k+l) ∈ 2Z. Now again consider x=2l ∈ 2Z. Then
-2l=2(-l) ∈ 2Z as well, and -2l=2(l) x−1. Thus 2Z is a subgroup.

2. Let n be any natural number. Is nZ a subgroup of (Z,+)?
Solution: nZ is a subgroup. Indeed let x = nk1 and y = nk2. Then x+ y = n(k1 + k2) ∈
nZ as required. Also x−1 = −nk1 = n(−k1) ∈ nZ
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3. Is N a subgroup of (Z,+)?
Solution: No, it is not closed under taking inverses. For example, 2 ∈ N but there is no
2−1 ∈ N

4. Let (G,*) be any group, and let a ∈ G. Consider the subset H = {ai : i ∈ Z}. (where ai

denotes doing the operation * to a i times. Is H a subgroup?
Solution: Yes this is a subgroup. Indeed let x = ai1 and let y = ai2 . Then x ∗ y =
ai1+i2 ∈ H. Also we get that x−1 = a−i1 ∈ H
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