
Math 111A Worksheet 3 Fall, 2020

THIS WORKSHEET COVERS MATERIAL SIMILAR TO SOME HOMEWORK 2 (and
HW 3) PROBLEMS. I RECOMMEND WORKING THROUGH THIS WORKSHEET BE-
FORE ATTEMPTING THE HW PROBLEMS ON NORMAL SUBGROUPS AND HOMO-
MORPHISMS.

Goals

• Know the definition of a Group Homomorphism and its kernal and image

• Understand the definition of a normal subgroup, and investigate their significance

• Investigate the connections between kernal of a group homorphism, normal subgroups,
and the so called Quotient Groups

Introduction

We ended our discussion last week by providing some detailed computations involving Cosets
for the integers. We described the collection of all cosets, Z/nZ and hinted that it looked
familiar to another group. Once and for all, we answer what group it looked similar to, and we
make the similarity precise. Doing so involves first the definition of a Group Homomorphism-
an idea of fundamental importance to Group Theory. Any time we have a definition of
functions, whenever possible, we discuss the subset of objects that get “killed” (ie mapped
to 0) by the function. This leads us to our definition of a kernal of a group homomorphism-
and we will investigate some basic properties of kernals. In particular, we will show that
they are the prototypical example of so called normal subgroups (and in fact are the only
example of normal subgroups). Normal subgroups arise as the answer to the following two
questions:

1. Suppose (G, ∗) is a group. Then we will denote the set of LEFT cosets for H in G as
H\G. Note this looks different than the set of RIGHT cosets G/H. (We will see that
in the case we are most interested in, the collection of left and right cosets coincide,
so the most common notation will be G/H going forward). A typical coset looks like
aH for some a in G. Then a question one could ask is, can we put a group structure
on H\G by defining a product ⊗ on the set of Left Cosets as aH ⊗ bH := (a ∗ b)H?

2. Suppose φ : G → H is a group homomorphism (to be defined below) between groups
G and H. What can we say about the elements g ∈ G such that φ(g) = eH? Does that
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form a subgroup, and if so does it have any further “structure?”

1 Products of Cosets and Normal Subgroups

Last week we I briefly went over the definition of the integers modular n, which I denoted
Zn and described it as the set Zn = {0, 1, . . . n− 1} where i is the equivalence class of the
number i subject to the equivalence relation i ≡ x mod n. This set can be rather simply
turned into an additive group by defining a+ b = a+ b, after one checked that this addition
rule is well defined. After that section, we took an interlude into cosets in general, and then
did some concrete computations for left cosets for the integers Z. In particular, we considered
the subgroup nZ for an arbitrary n, and found that the collection of all left cosets for this
subgroup, which we denoted Z/nZ was a very simple set, Z/nZ = {0+Z, 1+Z, . . . (n−1)+Z}
This set looks almost identical to the set Zn- and since we just went through the process of
showing that Zn is actually a group, a natural question one might ask is:

1. Is Z/nZ also a group?
Solution: Yes, Z/nZ is a group under the following addition rule: (a+ Z) + (b+ Z) =
(a+ b) + Z. In making this definition, one must check however the following things:

(a) If a + Z, and b + Z are two left cosets, is (a + b) + Z again a left coset? (closure
axiom)
Solution: We shall come back to a full proof of this later, but first- explain why
the following “counter-example” is actually wrong.

Counter-Proof:
Consider Z/4Z = {0 + Z, 1 + Z, 2 + Z, 3 + Z}. Then if we take the coset 2 + Z
and the coset 3 + Z and try to add them together in the rule defined above, we
would get (2 + Z) + (3 + Z) = (2 + 3) + Z = 5 + Z which is not a left coset of
Z/4Z. Hence this operation is not closed, and does not turn Z/4Z into a group.

Solution: This is an incorrect proof since the coset 5 +Z = 1 +Z so it remains
in the set.

(b) Think back to last week’s example where you showed that the cosets 3 + 2Z and
1 + 2Z for the group Z where the same. Indeed we used the fact that cosets are
actually equivalence classes. So in defining addition this way, we again need to
check that our choice of coset representative is well defined (just like in the case
Zn): Show this-
Solution: Again assume a1 + nZ = a2 + nZ and b1 + nZ = b2 + nZ. Then you
must show that (a1 + b1) + nZ = (a2 + b2) + nZ. Finish the proof:
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Indeed we have that (a1−a2) ∈ nZ and (b1−b2) ∈ nZ so (a1−a2)+(b1−b2) ∈ nZ
which is exactly what we needed to show.

(c) Now that we have shown addition is well defined and closed, finish the proof that
Z/nZ is a group. (You may have done this in class, if so try and re-do it for
practice without looking at your notes)
Solution:

i. The Identity for the group is nZ
ii. Let a + nZ be in Z/nZ. Then (a + nZ)−1= b + nZ where b is the unique

integer such that a+ b = n

iii. Show that addition is associative. This follows since addition is associative
in Z

2. In showing above that Z/nZ can be turned into a group, the real bulk of the work
is in showing that the product of 2 cosets is again a coset, and that the choice of
representative for the coset doesn’t matter. Do you think that it is always the case
that H\G can be turned into a group in this way? In other words, does the product
g1H ⊗ g2H := (g1 ∗ g2)H always turn H\G into a group? Jot down some thoughts
about why you think it is true, or try coming up with a counter example, or reason
why it would be false if you think it’s false

(a) Solution: Let G = S3 and let H = {e, (12)} written in cycle notation. Then one
can check that H is a subgroup of G. Now by Lagrange’s theorem, H is of index
3 (since G is of order 6, and H is of order 2) so there are 3 left cosets of H in G.
We always have the trivial coset eH- so, letting ψ = (123), the three cosets are:

i. ψH = {(123)e, (123)(12)} = {ψ, ψ(12)}
ii. ψ2H = {ψ2e, ψ2(12)} = {ψ2, ψ2(12)}

iii. eH = {e, (12)}
Note (12)H = {(12), (12)2} = {(12), e} = eH. However, consider the following
two products

i. (12)ψH = {(12)ψe, (12)ψ(12)} = {(13), (132)} = ψ2H

ii. eψH = {eψe, eψ(12)} = {(123), (23)} = ψH

Therefore, even though (12)H=eH, we got different results doing the multiplica-
tion eHψH and the multiplication (12)HψH so it is not a well defined product.

3. If you think the answer above is no, what distinguishes between the cases Z/nZ your
counterexample? The former could be turned into a group (Good!) while the later
could NOT be turned into a group (Bad!!)- what is the difference between these two
situations? Well, consider the following SUPER IMPORTANT THEOREM

Thrm: Let N be a subgroup of G. Then G/N can be turned into a group (called the
Quotient Group) under the rule aN ◦ bN = (ab)N if and only if gNg−1 ⊂ N for all

g in G (ie, for each n ∈ N, g ∈ G, we have gng−1 ∈ N). Furthermore in this case
G/H = H\G (that is the set of left cosets equals the set of right cosets)
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4. We call such subgroups Normal Subgroups and we denote them as N EG. Ok cool-
so we have a new class of subgroups which would give us a new group, G/N to study-
that’s nice, we like groups here! A natural question to ask though is, when and how do
these groups appear? How would I check that such a subgroup is Normal? We will say
more about this next section, however, with this theorem above in mind let us prove:

(a) Let (G, ∗) be an abelian group. Then for any subgroup H of G, the set of cosets
G/H is also an abelian group.
Solution: (Hint- The above theorem tells us when G/H can be made into a group-
why is it guaranteed in this case? Then recall how we defined the group product
in G/H to conclude its abelian.)
Solution: Since G is abelian, every subgroup H is normal in G (since ∀g ∈
G, ghg−1 = h for any h in H). Thus we can form the group G/H with multi-
plication aH × bH = (ab)H = (ba)H = bH × aH so it is abelian.

(b) Corollary to the above: Z/nZ is an abelian group (This is certainly the much
quicker way of proving Z/nZ is a group- but I believe the long way above is useful
because you get some working familiarity with how cosets “work”)
Solution: Explain why the above result gives us this: Indeed Z is an abelian
group, so H = nZ is abelian. Then by part a above the coset group Z/nZ is also
an abelian group.

2 Group Homomorphisms and Normal Subgroups

There’s a general “schema” in Mathematics that says the following: we are in the business
of constructing objects with certain properties (sets, groups, vector spaces, ect)- Once we
have constructed these objects, we then ask how they interact, ie, what sort of functions
are there between the objects. The functions we study between the objects should take into
consideration the structure that exists on our objects. Consider for example:

1. In Math 21 (or intro Linear Algebra class) and Math 117 (or Upper Div Linear Alg
course) we studied vector spaces. These were sets with an addition structure and a
“scalar multiplication” structure- These structures were reflected in our definition of
“linear transformations”, Recall- A linear transformation T : V → W between vector
spaces V,W is a function such that

(a) T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V .

(b) T (rv) = rT (v) for all r ∈ R, v ∈ V
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We mentioned that the axioms for vector spaces actually made the set into an Abelian group
under addition- Condition (a) of linear transformation guarantees the function “plays nice
with” the addition in both V, and W. With this in mind, consider the definition below:

Def : Let (G, ∗) and (H, ◦) be two groups. Then a Group Homomorphism between
G and H is a function ψ : G→ H such that ψ(g1 ∗ g2) = ψ(g1) ◦ ψ(g2).

1. Rephrase the definition of a linear transformation between two vector spaces in terms
of group homomorphisms
Solution: Let V, W be vector spaces. Then they are both abelian groups under addi-
tion. Therefore a Linear Transformation T : V → W is a group homomorphism such
that T(rv)=rT(v) for all v.

2. Consider the map ψ : Z→ Zn defined by ψ(x) = x. Is this a group homomorphism?
Solution: Yes this is a group homomorphism since a+ b = a+ b

3. Prove or disprove the following: “All group homomorphisms between two finite groups
of the same cardinality are group isomorphisms”
Solution: This is very false. For example, the so called 0 map (the map that sends
every element to the identity element) is a group homomorphism.

4. Suppose you want to construct a group homomorphism ψ : Zn → G from Zn to some
other group G. Then there is actually one more step you need to do than just showing
it splits up under the group operations. Keep in mind the steps needed in showing
that addition was well defined in Zn, and jot down your idea for what other step we
need to show
Solution: You need to show the function is well defined- meaning it does not depend
on choice of equivalence class representative. That is, if a ≡ b mod n you must show
that ψ(a) = ψ(b)

5. Explain why the following proof is Wrong: We show the function ψ : Z → R2

defined by ψ(z) = (z, z) is a group homomorphism.
Solution: Indeed, we have that ψ(1 + 1) = (1 + 1, 1 + 1) = (2, 2) and ψ(1) + ψ(1) =
(1, 1) + (1, 1) = (2, 2). Since ψ(1 + 1) = ψ(1) + ψ(1) we have shown it is a group
homomorphism.
We only showed that ψ splits up under a specific element! To show it is a group
homomorphism, we need to show it splits up under EVERY element, not just 1.

6. Come up with a function between two groups G,H that is NOT a group homomorphism.
Solution: There are very many. Here is a simple one. Take G = H = R as a group
under addition. Then f : R→ R defined by f(x) = x2 is not a group homomorphism
since f(1 + 1) = 4 while f(1) + f(1) = 2

7. Challenge Problem: Let m,n ∈ N. Take a guess about a sufficient condition for m and
n for there to exist a group homomorphism ψ : Zm → Zn
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Solution: We need n to divide m. We will maybe prove this later in the course- it is a
fun problem to think about- think about why this might be true!

Again, this is all well and good, yet it seems maybe a bit disconnected from the first half of
this worksheet. The following definition is the bridge:
Def: Let ψ : G→ H be a group homomorphism. Then

1. The kernal of ψ is the subset of G ker(ψ) = {g ∈ G : ψ(g) = eH} ⊂ G

2. The image of ψ is the subset of H im(ψ) = {h ∈ H : ∃g ∈ G with ψ(g) = h} ⊂ H, ie
the set of all objects in H hit by some object in G under ψ

Let us explain why this provides a bridge:

1. Elementary lemma: Prove that ker(ψ) is always non-empty. More specifically, prove
that eG ∈ ker(ψ)
Solution: We have that ψ(eG) = ψ(eG ∗ eG) = ψ(eG) × ψ(eG) so multiplying on the
right by ψ(eG)−1 gives eH = ψ(eG)

2. Prove that ker(ψ) and im(ψ) are subgroups of G and H respectively.
Solution: We just showed ker(ψ) is nonempty. Now let g1, g2 ∈ ker(ψ). Then ψ(g1 ∗
g2) = ψ(g1) × ψ(g2) = eH × eH = eH as desired. Now we show kernal is closed under
inverses. Let g ∈ ker(ψ). Then recall that for any g in G ψ(g−1) = ψ(g)−1, so in our
case, we get ψ(g−1) = ψ(g)−1 = (eH)−1 = eH as desired.
Now we show im(ψ) is a subgroup. It is clearly nonempty, so we show closed under
product and inverse. Let h1, h2 ∈ im(ψ). That is, there exist some g1, g2 ∈ G such
that ψ(g1) = h1, ψ(g2) = h2. Then h1 × h2 = ψ(g1) × ψ(g2) = ψ(g1 ∗ g2) which says
that h1×h2 is in the image. The fact that the image is closed under inverses is exactly
the remark that ψ(g−1) = ψ(g)−1 again. So we are done.

3. Explain how the above definitions and results provide a connection between normal
subgroups and group homomorphisms.
Solution: This was purposely vague to get you all to think about it a bit. The connec-
tion will be that kernals are normal subgroups! In fact, keep reading and we will show
that kernals are actually THE ONLY normal subgroups!

4. Consider the homomorphism ψ : Z → Zn defined above as example 2. Find ker(ψ)
and im(ψ)
Solution: The kernal of this map are all integers a such that a = 0 which means that
n divides a. Hence the kernal is nZ.
This map is surjective by construction, so the image is Zn.
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5. Explain how Z/nZ is related to the the example above
Solution: We have that nZ = ker(ψ) so the group Z/nZ = Z/ker(ψ)- in fact we will
see next week that this identification actually shows that the two groups Z/nZ and Zn

are “the same”

This above example actually provides an explicit characterization of how the groups Zn and
Z/nZ are related- Once we learn the “First Isomorphism” theorem next week, we can make
this relation explicit and clear. For now, let us show one final example, which shows that
every normal subgroup actually arises as the kernal of a group homomorphism. Remember
that we have already shown that kernals are normal subgroups- this gives the converse.

1. Let N E G be a normal subgroup of G. Then recall that G/N can be made into a
group. Consider the function π : G→ G/N defined as π(g) = gN .

(a) Show this is a group homomorphism.
Solution: This is just another way of expressing that the product we defined in
G/N is actually well defined. Indeed π(g1 ∗ g2) = (g1 ∗ g2)N = g1N × g2N =
π(g1)× π(g2)

(b) Find the kernal and image of this homomorphism.
Solution: The image is all of G/N by construction. The kernal is the collection
of all g such that gN=N. Remember that cosets are equivalence classes, so saying
that gN=N forces g to be in N. Hence ker(π) = N .

(c) Explain how this example justifies the claim “Normal subgroups and kernals to
group homomorphisms are really the same thing”
Solution: In the previous section, we showed that kernals of group homomor-
phisms are normal subgroups. The reverse question would be: Given a normal
subgroup NEG does there exist some other group H, and a group homomorphism
ψ : G→ H that “realizes” N as the kernal (ie ker(ψ) = N). We have just shown
that to be the case!! Given a normal subgroup N EG we saw that N is the kernal
of the group homomorphism π : G→ G/N !

This map π : G→ G/N is called the “natural projection map” for G onto G/N. Fuzzily
speaking what is happening in the group G/N is that we squish all of N to a single
point and look what is happening outside of N. The following example shows some of
the above vaguery in action.

2. Consider the additive abelian group R2, and let N = {(x, 0) : x ∈ R} (ie the x-axis).
Then since R2 is abelian we get that N is normal.

(a) Consider the projection map πy : R2 → R defined by πy(a, b) = b. That is
you project the element in R2 onto its y-component. Show that this a group
homomorphism.
Solution: πy(a1 + a2, b1 + b2) = b1 + b2 = πy(a1, b1) + πy(a2, b2) as desired.
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(b) Find ker(πy) and im(πy)
Solution: By definition, the kernal of πy consists of all elements in R2 whose y-
component is 0. In other words ker(πy) = {(x, 0) : x ∈ R} = N .
One can easily verify that im(πy) = R.

(c) How do you think the two projection πy : R2 → R and πN : R2 → R2/N are
connected? Under this connection, try and think of what the group R2/N “is”.
That is, without proving anything, what group do you think R2/N should look
like.
Solution: Instead of viewing the projection πy : R2 → R one could instead consider
the “natural projection” πN : R2 → R2/N whose kernal is also N. One might
suspect these group homomorphisms and in fact the groups themselves might
be very similar. One would indeed be correct: When we learn about the first
isomorphism theorem, and even the definition of “isomorphism” we will show
that these two groups, R and R2/N are “isomorphic”, and we will identify the
group R2/N as really being the full image under πy (that is, the group R2/N is
basically R2 where you squish all the x-axis to a single point)

3. Challenge problem. You can get some interesting geometrical shapes in this fashion.
Again consider the additive Abelian group G=R, but now let N = Z. One can show
this is a subgroup, so is again normal.

(a) Figure out what geometric object G/N is. (Hint, it is a very familiar geometric
figure- This shows a rather neat fact that this familiar shape is actually a group
in its own right!)
Solution: This group is actually the circle! See worksheet 4 for a more detailed
explination!

(b) Instead let G = R2 and let N = Z2 E R2. What is the geometric object G/N?
(this one is much trickier- but it’s still a very, very familiar shape)
Solution: This gives us the “torus” (that is, a donut!!) Again, see worksheet 4-
to prove these claims one needs to use the “first isomorphism theorem.”
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