
Math 111A Worksheet 4 Fall, 2020

”

THIS WORKSHEET COVERS MATERIAL SIMILAR TO SOME HOMEWORK 3
PROBLEMS. I RECOMMEND WORKING THROUGH THIS WORKSHEET BEFORE
ATTEMPTING THE HW PROBLEMS ON QUOTIENT GROUPS AND ISOMORPHISMS.

Goals

• Investigate the definition of isomorphism

• Apply the definition of isomorphism to specific examples

• Recall the 1st isomorphism theorem, and investigate applications of it.

Introduction

Last week, we investigated the notion of Normal subgroups, group homomorphisms, and the
kernal and image of group homomorphism. I mentioned that group homomorphisms are the
way in which we can determine how groups can interact with one another. In this worksheet,
we take that general goal further and investigate what we mean when we say two groups
are the ”same,” so called isomorphic groups. Once we have a proper conception of what
an isomorphism is- we can use it to exhibit a huge class of isomorphic groups. This will be
the 1st isomorphism theorem, and is probably the most important and powerful theorem
in Group Theory. We will conclude by providing some examples of the 1st Isomorphism
theorem, and show that our intuition about certain groups being the same is well founded.

1 Group Isomorphisms

Let us first begin by recalling a few definitions. Throughout all of this, let (G, ∗), (H, ◦) be
two groups.

1. A function ψ : G → H is a group homorphism if, for every g1, g2 ∈ G,ψ(g1 ∗ g2) =
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ψ(g1) ◦ ψ(g2)

2. The kernal of a group homorphism is ker(ψ) = {g ∈ G : ψ(g) = eH}

3. The image of a group homorphism is im(ψ) = {h ∈ H : ψ(g) = h for some g ∈ G}

4. We say a group homomorphism ψ : G→ H is injective (or 1-1, read as ”one to one”)
if whenever ψ(g1) = ψ(g2) we must have g1 = g2 (that is, distinct elements in G get
mapped to distinct elements in H)

5. We say a group homomorphism is surjective (or onto) if im(ψ) = H

In the background, we should be keeping in mind the definition of normal subgroups as
defined last time. Specifically, remember that the kernal of any group homomorphism is
a normal subgroup, which lets us consider the Quotient Group G/ker(ψ). Let us first
give a simple Lemma, and then we give some examples, and non-examples, of injective and
surjective group homomorphism.

1. Lemma: Let ψ : G→ H be a group homomorphism. Then ψ is injective iff ker(ψ) =
{eG}
Solution: First, assume ψ is injective and suppose g ∈ ker(ψ). Then ψ(g) = eH , yet
recall the lemma we showed last week gave us ψ(eG) = eH . Thus ψ(g) = ψ(eG) and
since ψ is injective, we get that g = eG. Hence the only element in the kernal is the
identity.
Prove the reverse implication:
Now assume ker(ψ) = {eG} and assume that ψ(g1) = ψ(g2) for some g1, g2 ∈ G. Then,
multiplying on the right we get ψ(g1)ψ(g2)

−1 = eH . Since ψ is a group homomorphism,
we can pull the inverse in to get ψ(g1g

−1
2 ) = eH . Yet since the kernal is trivial we get

g1g
−1
2 = eG so g1 = g2.

2. Consider the identity map id : G→ G defined by id(g)=g for all g in G. This is clearly
injective and surjective.

3. Consider the map ψ : Z→ Zn defined by ψ(x) = x. Is ψ injective? Is it surjective?
Solution:

(a) We found the kernal of this map last worksheet. For completion, find it here again
to conclude this map is not injective.
Solution: First, we note that the identity in Zn is the equivalence class of 0, 0-
that is, all integer multiples of n. Therefore ker(ψ) = {x ∈ Z : x = 0} = {x ∈ Z :
x = nk for some k ∈ Z} = nZ. Therefore, this group is not injective.

(b) Is ψ surjective?
Yes this map is surjective. Given a ∈ Zn we get that ψ(a) = a.
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4. Let ψ : Z→ Z be defined by ψ(z) = 2z. Is ψ injective? Surjective?

(a) Surjective: (Hint- to show that something IS surjective, you need to show every
element in the codomain is mapped to by at least one element in the domain. To
show something is NOT surjective on the other hand, it suffices to show that a
single element in the codomain is not mapped to. Think about which is the case
here )
This map is not surjective. The image is only the even integers, so no odd integers
are mapped to. For example, 3 is not in the image.

(b) Is ψ injective?
Yes this map is injective. We can use the characterization of injectivity from
above to show this. Namely, if ψ(z) = 2z = 0 then z=0 so ker(ψ) = {0}

5. Important Example: Let N E G be a normal subgroup. Recall we defined the
”natural projection of G onto G/N” last section, π : G → G/N by π(g) = gN . Is π
injective? Surjective?

(a) Is π injective? The identity element of G/N is the trivial coset N. Now we have
g ∈ ker(π) ⇐⇒ gN = N ⇐⇒ g ∈ N so ker(π) = N showing that π is not
injective.

(b) Prove that π is surjective.
Recall that G/N consists of all left (or right) cosets of N in G. So let gN be such
a coset for some g in G. Then π(g) = gN showing that π is surjective.
(compare to example 4 above).

The real power of the definitions injective, and surjective group homomorphisms come when
we combine them: That is the following definition.

A group homomorphism ψ : G→ H is a Group Isomorphism if ψ is both injective and
surjective. We say the groups G and H are Isomorphic and write it G ∼= H

The intuition one should build is that if two groups are isomorphic, they are ”the same.” That
is, they should have the same group structure. Let us make that a little clearer hopefully
with the following example:

1. Suppose (G, ∗), (H, ◦) are two groups and ψ : G→ H is an isomorphism. Then, given
any h1, h2 ∈ H and since ψ is an isomorphism, we know that there exists unique g1, g2
with ψ(g1) = h1, and ψ(g2) = h2. Suppose we know that g1 ∗ g2 = g3 in G. Then this
forces what h1 ◦ h2 can be (that is, knowing the multiplication in G forces it in H).
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Indeed, we claim h1 ◦ h2 = ψ(g3)
Solution: The only pieces of information we know are that the h’s come from unique
g’s by a group homomorphism. Use that information to complete this proof:
We have that h1 ◦h2 = ψ(g1)∗ψ(g2) by assumption. Now ψ is a group homomorphism
so we get that h1 ◦ h2 = ψ(g1 ∗ g2) = ψ(g3)

Let us be careful about what the definition of isomorphism says and doesn’t say. For example,
say what are wrong about the following Incorrect proofs.

1. We prove that every group homomorphism between isomorphic groups is injective
Solution: Suppose G ∼= H. Then the homomorphisms between them are by definition
both surjective and injective. Thus, every group homomorphism between G and H is
in particular injective.
Recall that G is isomorphic to H if THERE EXISTS a bijective group homomorphism
between them. It emphatically does not say that every such group homomorphism
between them is an isomorphism. For example, G ∼= G trivially (take the identity
map) but the zero morphism 0 : G → G defined by 0(g) = eG is a (very much) non
injective group homomorphism.

2. We show the groups Z and 2Z are NOT isomorphic.
Solution: We know that 2Z is a proper subgroup of Z and since there are elements in
Z that are not in 2Z there is no way for the groups to be isomorphic.
This is another example of why infinite sets are weird. The group homomorphism
ψ : Z→ 2Z defined by ψ(z) = 2z is a group isomorphism!

2 Some Examples of Group Isomorphisms

In this section, we provide isomorphic groups. In each case, show why they are isomorphic.
That is, exhibit a group isomorphism between them.

1. Let (G, ∗) = (R,+) and let H = {(x, 0) : x ∈ R}E R2. Show that G ∼= H
Solution: Define the map ψ : G → H by ψ(r) = (r, 0). This is a bijective group
homomorphism.

2. Let (G, ∗) = (R,+) and let H = {(0, y) : y ∈ R}E R2. Show that G ∼= H
Solution: Define the map ψ : G→ H by ψ(r) = (0, r). This is again a bijective group
homomorphism.
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3. Let (G, ∗) = (R4,+) and let (H, ∗) = (M2×2(R),+). Show that G ∼= H

Solution: Define a map ψ
(
(x1, x2, x3, x4)

)
=

(
x1 x2
x3 x4

)
This is a group homomorphism since matrix addition is defined componentwise. It is
surjective by construction since we can choose any real number in the domain. Finally,

assume ψ
(
(x1, x2, x3, x4)

)
=

(
0 0
0 0

)
Then x1 = x2 = x3 = x4 = 0 so ψ has trivial

kernal and is thus injective.

4. Does there exist two vector spaces V,W that are isomorphic as vector spaces such that
their underlying abelian groups are NOT isomorphic? (recall a vector space isomor-
phism is a bijective linear transformation)
Solution: No, all vector space isomorphisms are in particular abelian group isomor-
phisms. Remember a linear transformation is in particular a group homomorphism, so a
bijective linear transformation will automatically be a bijective group homomorphism-
and thus a group isomorphism.

With this notion of Isomorphism in mind, one might guess that we can finally answer how
Z/nZ and Zn are related- namely that they are isomorphic! You would in fact be correct!!
However, to construct an explicit isomorphism between those two groups involves an an-
noying subtlety: Both groups are comprised of equivalence classes- so in defining a function
between them, one has to show the added step that the function is well defined (see example
3 in section 2 of last worksheet). In other words, you have to show that the function does not
depend on choice of representative for the equivalence class (think back to how we showed
addition is well defined for each case). Therefore, rather than showing explicitly that they
are isomorphic, we will first rely on the powerful 1st isomorphism theorem of next section.
After which, for practice in showing functions are well defined, we will give a second, more
explicit proof of the fact they are isomorphic.

3 First Isomorphism Theorem

Consider the following two examples we have worked through:

1. We considered the additive abelian group (R2,+), and let N be the normal subgroup
N = {(x, 0) : x ∈ R}ER2 (ie the x-axis). We then considered the projection map onto
the y-axis:

(a) πy : R2 → R defined by πy(a, b) = b.
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(b) We showed this map was surjective, and that the kernal of this map was exactly
N

(c) We then hinted that this map might have some connection to the other projection
map πN : G→ G/N and, through that connection, might help us understand the
group G/N .

2. We also considered the surjective group homomorphism π : Z→ Zn defined by π(x) =
x. We showed

(a) That this map had kernal nZ
(b) We again also have the projection map π : Z→ Z/nZ and we have been hinting

that there is some connection between the groups Zn, and Z/nZ

In both cases we were given a surjective group homomorphism, and through that group
homomorphism got some idea as to what the more complicated quotient group might look
like (namely it should be the codomain of the surjective homomorphism). This is not a
coincidence:

Theorem (1st Isomorphism Theorem): Let ψ : G→ H be a group homomorphism.
Then there is an isomorphism G/ker(ψ) ∼= im(ψ)

1. Prove once and for all that Z/nZ ∼= Zn
(The proof will use the 1st iso theorem- At this point, I should really note- you will of-
ten find some textbooks don’t even distinguish between the two groups Zn and Z/nZ.
In my opinion, this isn’t great pedagogically- while one can show that the equivalence
relation defining Z/nZ is really at the end of the day, the same equivalence relation
defining Zn, (see Worksheet 2), in my opinion, treating these as separate groups until
this point provides a great deal of motivation for a lot of the tools we have built up-
and really gives a great starting point example to build a framework around how one
actually uses the 1st isomorphism theorem)

Solution: Again consider the map ψ : Z → Zn. We showed in Section1 example 3
that this map was surjective with ker(ψ) = nZ. Thus by the first Isomorphism Thrm
we get Z/nZ ∼= Zn.

2. Consider the case from example 1 above. Show that R2/N ∼= R
Solution: As we mentioned above, this map is surjective with kernal N. Thus by the
first iso thrm again we get R2/N ∼= R

3. Consider the circle S1 = {eiz : z ∈ R} (this really is a way to describe the circle- if you
haven’t seen complex numbers before, let me know and I can give you a crash course)
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(a) Show that S1 is a group under the usual multiplication eiz1 × eiz2 = ei(z1+z2) (the
circle is a group!! Pretty cool huh!)
Solution: The identity of this group is just the number 1 = e0i and we have
(eiz)−1 = e−iz. With these two pieces of information, it is a nice exercise to show
that S1 is a group.

(b) Show that R/Z ∼= S1.
Solution: You will use the first isomorphism theorem. Construct a surjective
group homomorphism ψ : R→ S1 with kernal Z.
Such a map is given by ψ : R→ S1 defined by ψ(r) = e2πri. This is surjective and
the kernal is Z (remember the identity is just the number 1) so again we conclude
by the 1st Iso Thrm.

4. Challenge Problem: Recall that the sets GLn(R) = {A ∈Mn×n(R) : A is invertible}
and SLn(R) = {A ∈ GLn(R) : det(A) = 1} are groups under multiplication and that
SLn(R)EGLn(R). Use the first isomorphism theorem to find what the quotient group
GLn(R)/SLn(R) is.
Solution: Define the map ψ : GLn(R) → R∗ by ψ(A) = det(A) the determinant of A.
(where R∗ is the group of nonzero real numbers under multiplication). Remember that
det(AB) = det(A)det(B) so this is a group homomorphism! Now let r ∈ R∗. Then the
diagonal matrix A = diag(r, 1, . . . , 1) has det(A)=r so the map is surjective.
Finally, the kernal of this map are the matrices with det=1, ie ker(ψ) = SLn(R). So
by the 1st Iso Thrm again, we get GLn(R)/SLn(R) ∼= R∗

It is hard to overstate the importance and significance of this little theorem. For starters,
all the other so called ”Isomorphism Theorems” we will learn are proved using this theorem.
More immediately though, we have just demonstrated its power in action. The general
schema is the following:

1. Suppose you are given some normal subgroup N EG of your group G. Then we know
we can turn this into a group G/N . However, this group is rather messy- its elements
are equivalence classes and ”doing” stuff on it therefore requires some care. So rather
than trying to work out the group G/N from first principles we use the 1st Isomorphism
Thrm.

2. Explain how the 1st isomorphism theorem gives us one line of attack in trying to
determine what the group G/N is isomorphic to. Describe the steps one would take
(think about the examples given above- what did we do for those cases?)
Solution: We should like to define a surjective group homomorphism from G to some
other group H that has kernal precisely equal to N! If we can do so, then we conclude
by the 1st Iso Thrm that G/N ∼= H.
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3. Some extra information about quotient groups beyond the scope of the
course
There is a property of quotient subgroups that really gives the first isomorphism it’s
power- and really actually explains ”why” the theorem is true. Recall that for N EG
we denoted the natural projection map as π : G → G/N , and we saw that this map
has ker(π) = N . From the perspective of ”Category Theory” (what I study), the pair
(G/N, π) convey the so called ”universal property of the quotient group”. What that
means explicitly is the following:

(a) Suppose you had some other group homomorphism ψ : G → H such that ψ
”kills” everything in N, that is N ⊆ ker(ψ). Then that morphism can be ”fac-
tored” uniquely as follows

G H

G/N

ψ

π
∃!f

, that is there exists a unique map f : G/N → H such that f ◦ π = ψ.

(b) To put this precisely, we have that the pair (G/N, π) is ”initial” amongst all pairs
(H,ψ) with the property that N is contained in the kernal of ψ. Remember that
defining morphisms out of quotient groups is tricky since the objects are equiv-
alence classes- this universal property helps us get around that added difficulty!
To define a map from G/N → H one must only give a map from G → H that
contains N in the kernal. ”Morally” what this says is that the group G/N is the
”best possible” group in which every element from N ”is zero”

As promised, to end it out- here is the ”obvious” function that explicitly shows the isomor-
phism between Zn and Z/nZ. I have mentioned before that much of higher mathematics is
aesthetic driven- Cards on the table, so to speak, I find the following proof quite aesthetically
ugly compared to the previous proof. However, to each their own:

1. Let ψ : Z/nZ→ Zn be defined by ψ(x+ nZ) = x.

(a) Show this is a well defined function-ie, does not depend on choice of coset repre-
sentative.
Solution: Suppose (x1 + nZ) = (x2 + nZ). Then we get that x1 − x2 ∈ nZ =⇒
x1 = nl+ x2. Thus ψ(x1) = ψ(nl+ x2) = ψ(nl) +ψ(x2) = ψ(x2) since ψ(nl) = 0.
Thus this map is well defined.

(b) Show furthermore that this is a group homomorphism.
Solution: Note ψ((x1 +x2) +nZ) = x1 + x2 = x1 +x2 = ψ(x1 +nZ) +ψ(x2 +nZ)
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(c) Show this is a group isomorphism
Solution: Let a ∈ Zn. Then ψ(a+ nZ) = a so it is surjective.
Now assume that ψ(a+nZ) = 0.This implies that a ≡ 0 mod n, ie n|a so a ∈ nZ.
Hence a + nZ = nZ which is the identity element in Z/nZ. This shows the only
element that maps to the identity in Zn is the identity in Z/nZ so the map is
injective. Combining it all we get that it is a group isomorphism.
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