
Math 111A Worksheet 6 Fall, 2020

Goals

• Build more intuition into the notion of Characteristic Subgroups

• Provide and investigate examples of characteristic subgroups

• Investigate Cayley’s Theorem and other related theorems, and provide applications of
said theorems.

• Familiarize ourselves with cycle notation for permutations.

• Investigate how to multiply said cycles and their relationship to the corresponding
function composition.

Introduction

We begin this worksheet by briefly recalling our discussion of characteristic subgroups. We
recall why we might want to investigate subgroups that are ”stronger” than normal sub-
groups, and why the definition of Characteristic Subgroups are a very natural generalization
of Normal Subgroups. Once we re-familiarize ourselves with characteristic subgroups, we
change gears a bit to investigate the question of embedding our groups into Symmetric
groups. We show that every group can be embedded into a symmetric group, and moreover,
we can say some things about what that symmetric group looks like. This theorem is his-
torically significant, and, moreover, provides us with some immediate, powerful corollaries.
Since we have shown that every group embeds in some symmetric group, it is rather nat-
ural that we turn our attention back to symmetric groups at the end. We discuss ways of
”decomposing” our bijective functions into more workable cycles, and give some examples of
computations.

1 Characteristic Subgroups- The Sequel

Last week we investigated how much of the structure of the group G is reflected in the
structure of the group G/N for some normal subgroup N. That discussion in part justified
our focus on, and the special role we give to, normal subgroups. However, at the very
end of last week we mentioned some shortcomings of normal subgroups: remember that
”normality is not a transitive property” (meaning one can find subgroups H, K in G such
that HEKEG but H is not normal in G). This failure led us searching for a slightly stronger
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notion of a subgroup than normal subgroups. Remember that an inner automorphism of
G is the group automorphism fg : G → G defined by fg(h) = ghg−1. With this notation,
we can rephrase our definition of being a normal subgroup as N EG iff it is fixed by every
inner automorphism. This rephrasing provides the best candidate for generalizing normal
subgroups- rather than demanding our subgroup be fixed by Inn(G) 6 Aut(G) we ask that
our new class of subgroups be fixed by ALL automorphisms of G. These subgroups are
called Characteristic Subgroups, and you showed in your homework last week that they are
a ”transitive property.” Let us give some examples of characteristic subgroups

1. Recall that Z(G) = {x ∈ G : xy = yx for all y ∈ G} is the center of G. Then you were
asked to show in your homework that the center is a characteristic subgroup of G.

2. Now time for an extremely important example. Let x, y ∈ G be elements of some
group G. Define the ”commutator” of x and y as [x, y] = x−1y−1xy. This commutator
provides some measure of how much x and y fail to commute. More precisely

(a) Show that xy = yx[x, y]. In particular xy=yx iff [x, y] = eG
Solution: This is immediate from the definition. Indeed yx[xy]=yxx−1y−1xy = xy

(b) Let σ ∈ Aut(G) Show that σ([x, y]) = [σ(x), σ(y)]
Solution: We have, using that σ is a group homomorphism, σ([x, y]) = σ(x−1y−1xy) =
σ(x−1)σ(y−1)σ(x)σ(y). Then, again, since σ is a group homomorphism, the in-
verse can be pulled out to get σ(x)−1σ(y)−1σ(x)σ(y) = [σ(x), σ(y)]

(c) Let [G,G] denote the subgroup of G generated by all commutators [x, y] for x,y
in G. That is [G,G] = 〈[x, y] : x, y ∈ G〉. Use part b above to conclude that
[G,G] char G.
Solution: The above shows that any automorphism applied to a commutator
remains a commutator. Hence any automorphism applied to any element of [G,G]
will remain in [G,G] (since elements of [G,G] are generated by commutators.

(d) Show that G/[G,G] is an abelian group.
Solution: Let x[G,G], y[G,G] ∈ G/[G,G]. Note that for any x, y in G we have
that x−1y−1xy ∈ [G,G]. Then using the defining characterization of Cosets (See
Worksheet 2) we get that xy[G,G] = yx[G,G]. (Recal, aH=bH iff b−1a ∈ H)
showing that G/[G,G] is abelian as desired.

(e) Show that if HEG with G/H abelian, then [G,G] 6 H. This shows that G/[G,G]
is the largest abelian quotient we can form out of G. Conversely, if [G,G] 6 H
then we have H EG and G/H is abelian.

Solution: I will prove the converse for you because it is a great application of
the 3rd and 4th isomorphism theorem from last week. Assume [G,G] 6 H. Now
by part d above, we know G/[G,G] is abelian, so all of its subgroups are normal.
Since [G,G] 6 H, we have that H/[G,G]EG/[G,G]. Again by the 4th iso thrm,
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we have that a subgroup is normal in the quotient group iff the corresponding
subgroup is normal in G. Thus H EG.
Now, since G/[G,G] is abelian, all quotients of it are abelian too (see your last
homework, or Worksheet 2). Thus (G/[G,G])/(H/[G,G]), is abelian. Finally, we
note that G/H ∼= (G/[G,G])/(H/[G,G]) finishing the proof.
Prove the other direction:
Suppose that H EG with G/H abelian. Then xyH = yxH for all x,y in H. That
is, (yx)−1xy ∈ H for all x,y. Hence [x, y] = (yx)−1xy ∈ H and since [G,G] is
generated by all commutators this shows [G,G] ⊆ H.

(f) Challenge Problem: Suppose f : G→ A is a group homomorphism into an abelian
group A. Then show this group homomorphism can be uniquely factored through
G/[G,G] as follows,

G A

G/[G,G]

f

π
∃!f

That is there exists a unique f : G/[G,G] → A such that f = f ◦ π. Hint- you
will use number 3 on Page 8 of Worksheet 4. You must show that [G,G] 6 ker(f)
(use part e above, and the 1st isomorphism thrm)
Soltion: Come to my office hours or email me if you want to talk about this
problem. It is an example of ”Category Theory” in action- the subject I study.

All together, these problems give us the ”best possible” way to form an abelian group
out of G. Part a shows that a commutator is a measure of how much certain items
fail to commute. So if our group is already abelian [x, y] = eG for all elements x,y
which implies our subgroup [G,G] = {eG}. So in general, the commutator subgroup is
collecting all the elements in our group G that do not commute- so when we quotient
by it, we ”kill off” all those elements, making the resulting quotient group abelian.
The challenge problem states formally what I mean when I say G/[G,G] is the ’best
possible abelian quotient group out of G.’ You can safely ignore that part if you wish.

2 Cayley’s Theorem and Applications

Historically, groups were studied mostly as sets of permutations (ie, bijective functions).
For example, the great French Mathematician Évariste Galois, who invented the absolutely
beautiful branch of mathematics called ”Galois Theory”, studied the group of permutations
of roots of polynomials to give a necessary and sufficient condition on a polynomial being
”solvable by radicals” (the analogue to the quadratic equation for a general polynomial). The
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fact that groups were often studied concretely as permutations on some set is no accident,
given the theorem you learned in class:

Cayleys Thrm: Let G be a group. Then there is a set S and an injective group
homomorphism ψ : G ↪→ A(S). In particular, using the first isomorphism theorem, we can

identify G with its image G ∼= ψ(G) 6 A(S).

Now in class you showed that the proof to the above theorem is constructive; meaning you
explicitly state what the set S is (S=G) and what the function ψ is (ψ(x) = lx, left multi-
plication by x).
The problem with this construction is that A(G) might be way to big to make this identi-
fication useful. So, in the same spirit as the above, we instead looked for a homomorphism
π : G → A(S) into some other set S where we now don’t require our map to be injective.
Let H 6 G and let G/H be the set of left cosets of H in G. Define lx : G/H → G/H by
lx(aH) = xaH.

1. Show that this function is well defined. That is, if a1H = a2H show that lx(a1H) =
lx(a2H)
Solution: Assume a1H = a2H- so that, by assumption, (a2)

−1a1 ∈ H. Now xa1H =
xa2H ⇐⇒ (xa2)

−1(xa1) ∈ H. We conclude since (xa2)
−1(xa1) = a−12 x−1xa1 =

a−12 a1 ∈ H by assumption.

2. In class you then showed that the function ψ : G → A(G/H) defined by ψ(g) = lg is
in fact

(a) A group homomorphism

(b) Where ker(ψ) EG

(c) And in fact ker(ψ) 6 H is the largest normal subgroup contained in H. Therefore,
if H has no normal subgroups contained in it, then the map ψ : G → A(G/H)
gives an isomorphism G ∼= ψ(G) 6 A(G/H) where A(G/H) is much smaller than
A(G).

Let us remark why that is important:

3. We have said a lot about why we would want a subgroup to be Normal, however
we haven’t made many sweeping claims about when we can actually know a normal
subgroup exists for an arbitrary group. The above result gives a powerful way to look
for normal subgroups of G!

(a) Recall we defined the index of H in G to be i(H) =
o(G)

o(H)
, and remember that the

order of the group A(G/H) is o(A(G/H))=i(H)! (that is the index of H factorial).
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Now by Lagrange’s theorem the order of any subgroup of A(G/H) must divide the
o(A(G/H))=i(H)!. Thus, if o(G) - i(H)! then there can be no subgroup in A(G/H)
isomorphic to G. Hence, the image ψ(G) 6 A(G/H) cannot be isomorphic to G,
so in other words, there is a non trivial kernal of ψ. This non-trivial kernal will
be a non-trivial normal subgroup of G!

(b) This looks rather mundane, but it is actually a rather nice tool that we will use
over and over again. Here are some examples:

i. Prove every group of order 25 has a normal subgroup of order 5.
First we show every group G of order 25 has a subgroup of order 5. Note if G
is cyclic, the G trivially has a subgroup of order 5 (since cyclic groups have a
unique subgroup of order n for all n dividing the order of the group), which
is normal trivially since cyclic groups are abelian.
Therefore assume G is not cyclic and let e 6= x ∈ G. Then the subgroup 〈x〉
is a subgroup of G of order strictly greater than 1 (since x isn’t the identity).
Therefore, by LaGrange’s Thrm, 〈x〉 has order either 5 or 25- yet if it had
order 25, then G=〈x〉 contradicting that G is not cyclic. Hence 〈x〉 has order
5, so G has a subgroup of order 5.
Now we show it is normal. Indeed the index of G/H is 5, and 25 does not
divide 5!- so we conclude by the lemma above in part 3 that G must contain
a normal subgroup contained in this subgroup of order 5. Yet there are no
subgroups inside a subgroup of order 5 (since it has prime order) so the sub-
group itself must be the normal subgroup.

ii. Let G be a group of order p2. The point of this problem is to prove that
G must be abelian. Now if G is cyclic we are trivially done, so assume G
is not cyclic.

A. In your homework (and basically, in the problem above) you show that
there exists a normal subgroup H of order p. Show H = 〈x〉 for some x
in G.
Solution: All groups of prime order are cyclic!

B. Now let y ∈ G −H (that is, y is in G but not in H). Show that 〈y〉 is a
normal subgroup of G.
Solution: This is exactly the same argument as in part (i) above. The
subgroup generated by y will be of order p which you just showed must
be normal.

C. Find 〈x〉 ∩ 〈y〉
Solution: We have that 〈x〉 ∩ 〈y〉 6 〈x〉 so since the order of 〈x〉 is p, by
LaGranges Thrm the order of 〈x〉 ∩ 〈y〉 is either p or 1. Since we know
y /∈ H we conclude that the order must be 1, that is 〈x〉 ∩ 〈y〉 = {eG}

D. Use a previous HW problem to conclude that xy=yx. Since x is a gener-
ator for H and that y was arbitrary, conclude that yh=hy for all h in H
so that H ⊆ Z(G)
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We showed that if H, N are two normal subgroup such that H∩N = {eG}
then elements in H and N commute.
Therefore, for any element y not in H, yh=hy for all h in H. Since H is
cyclic, we get that elements inside H commute too (that is h1h2 = h2h1
for any hi ∈ H). Therefore ah=ha for all a in G, h in H, showing that
H 6 Z(G).

E. If Z(G) = G then G is abelian so we are done. Therefore, for the sake
of contradiction assume Z(G) ⊂ G is a strict subset. Then conclude that
H=Z(G)
(Hint: we have H ⊆ Z(G) has order p. If Z(G) is a strict subset of G,
what is its size?)
We have that Z(G) will be of size 1 or p by LaGrange’s Thrm. However
part D above showed that a subgroup of size p is contained in the center.
Hence the center must have at least p elements, so it has to have exactly
p elements.
So we have a subgroup of size p (H from above) contained in a subgroup
of size p (the center). Therefore they must be the same, H=Z(G).

F. Using the quotient group G/H, conclude that G is abelian.
(Hint: Look at Problem 2 on Pg 2 of Worksheet 5).
We proved earlier that if G/Z(G) is cyclic then G is abelian. We have
that G/H is a group of order p, and hence cyclic. By part E above,
H=Z(G), so we have that G/Z(G) is cyclic, and we get that G is abelian.

iii. Is the same true for groups of order p3. Or even more generally, are all groups
of order pn abelian for any n? Try to prove it or give a counter-example.
This is not true. For example, G = D8 the symmetries of a square is not
abelian.
HOWEVER, we will prove next week using the Class Formula that any p-
group (that is a group of order pn for some n) is the next best thing- We will
show they are ”solvable” groups). )

(c) Recall that we previously showed that a subgroup of index 2 is normal in G. We
can now generalize that. Let p be the smallest prime number that divides the
order of the group G, and let H 6 G have index p.

i. First, because we never explicitly mentioned this I believe, consider the
following set up: Suppose H1 6 G,H2 6 G are two subgroups and that
H1 ⊂ H2. Show that Lagrange’s Thrm is multiplicative: That is show that
[G : H1] = [G : H2][H2 : H1] (where ([− : −] is the index of the smaller group
in the larger group)
Solution: I will give you a more concrete goal for this problem, and ask you
to prove this next claim: if you want to see it in more details after you have
attempted it, come to my office hours or email me.

Show that there is a bijection of sets G/H1
∼= G/H2 ×H2/H1. (Hint: you

will use LaGranges thrm: A way to state LaGranges thrm is that for H 6 G
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there is a bijection of sets G ∼= G/H ×H. )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii. Now let H be the subgroup of index p as mentioned above, and consider the
group homomorphism ψ : G→ A(G/H) given by ψ(g) = lg as above, and let
K = ker(ψ). Show that [G : K] divides p! (p factorial- it’s not just me being
really excited)
(Hint- First isomorphism Thrm!!)
Solution: We have that G/K ∼= im(ψ) 6 A(G/H) so by LaGrange’s Thrm
the order of G/K must divide the order of A(G/H) = p!

iii. We know that ker(ψ) = K ⊆ H from class so let [H : K] = n. Use the
decomposition of [G : K] = [G : H][H : K] given in part (i), and the result
of part (ii) to conclude that n divides (p-1)!
Solution: We have that [G:K]=[G:H][H:K]=pn. Then since [G:K] divides p!,

we get that pn divides p!, so n divides
p!

p
= (p− 1)!

iv. By the minimality of p, conclude that n=1, and explain why that shows H is
a normal subgroup of G.
Solution: All the prime divisors of (p-1)! are strictly less than p, yet since
p is the smallest prime dividing the order of G, all prime divisors of n must
be greater than or equal to p (since n divides the order of G, and using that
divisibility is transitive). Hence n=1, so H=K is a normal subgroup (since it
is the kernal of a group Homomorphism).

3 Cycle Decomposition of Permutation Groups

Let S = {1, 2, 3, 4, 5} and consider the function ψ ∈ A(S) = S5 given by

ψ(1) = 2

ψ(2) = 1

ψ(3) = 3

ψ(4) = 5

ψ(5) = 4

This is one function that sends each of the 5 elements to one of the 5 elements- however,
notice that we can more or less break apart this function into different pieces. We have 1
goes to 2 and 2 goes back to 1; 3 is fixed, and 4 goes to 5 which goes back to 4. The idea is



Math 111A Worksheet 6, Page 8 of 11

that we can view this one function ψ above as being more or less the combination of these
three more simple functions.
Therefore, we can (as a means of notation) write this function as ψ = (1, 2)(3)(4, 5), where
(i,j) means i goes to j, and j goes to i. We call such a product a ”cycle decomposition of ψ”.
It is common to not include the cycles of length one corresponding the the elements that are
fixed by our function (in the case above, this is the cycle (3) ). I won’t do that at first to
avoid confusion, but I will do that in the last example.
The intuition we should build is that any such bijective function can be broken down into
such a cycle decomposition, in such a way as we just did to ψ above. One just looks at
what happens to each element and eventually one will come back to where we started. Our
intuition in this case is correct, however, proving such a result actually is rather tricky it
turns out! You will prove it in class, and the proof relies on defining another equivalence
relation- so rather than rehash the proof here, I think it is worthwhile developing some
practice on computing things with these cycle decompositions.

1. One huge piece of warning up front. Remember that if A
f−→ B

g−→ C are two functions
then Herstein writes the composite as fg and NOT the more common way of gf . This
will be important below.

2. If we are going to express our functions as cycles like we did for ψ above, we are going
to need to learn how to ”multiply” these cycles together.

(a) Consider ψ ∈ S5 as above and let φ ∈ S5 be given by φ = (1, 3, 4)(2, 5) written in
cycle notation. Write out what this function actually is
Solution: We have φ(1) = 3, φ(2) = 5 Fill in the rest.
We have φ(3) = 4, φ(4) = 1, φ(5) = 2

(b) Since ψ, φ ∈ S5 we can form their composite γ = ψφ (where again this means

S
ψ−→ S

φ−→ S). Now we would like to be able to write the cycle decomposition of
γ just from the cycles of ψ and φ. Indeed we can do so as follows:

i. Write the cycles of ψφ back to back. That is write (1,2)(3)(4,5)(1,3,4)(2,5).
Now we want our cycles to be disjoint! That is, we don’t want any number
to appear in two different cycles- so we will read off this cycle product as fol-
lows: We read LEFT TO RIGHT (because of Herstein’s function composition
convention); in our case, we have that:

A. 1 first goes to 2, then we look to the right to see if there are any mentions
of 2 in the future cycles. In our case we have that 2 goes to 5. So for the
product we get 1 goes to 5. Now we repeat.

B. The cycle on the far left says 2 goes to 1- looking to the right we get 1
goes to 3, so 2 goes to 3.

C. Now we look at 3. 3 at first is fixed so we keep looking to the right and
see that 3 goes to 4. There are no more 4’s to the right so we get that 3
goes to 4.
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D. Now 4 originally goes to 5 and looking to the right we get 5 goes to 2, so
4 goes to 2.

E. Finally 5 originally goes to 4 and looking to the right 4 goes to 1 so 5
goes to 1.

Putting this all together, we get that multiplying our cycles in this way gives
us the cycles decomposition (1,5)(2,3,4). The reason we do the cycle mul-
tiplication this way is because this cycle decomposition we get IS the cycle
decomposition for the function composition.

A. Using your work from part a above, find what the function ψφ is.
Solution. We have ψ(1) = 2 and φ(2) = 5 so φ(ψ(1)) = 5. Fill in the rest

φ(ψ(2)) = φ(1) = 3

φ(ψ(3)) = φ(3) = 4

φ(ψ(4)) = φ(5) = 2

φ(ψ(5)) = φ(4) = 1

B. Find the cycle decomposition of the function ψφ you computed above.
We have the cycle decomposition is given as (15)(234)

C. Compare that cycle decomposition with the way we multiplied the cycles
above. Check that they are the same.
Yup! They are the same!!! Wooooooooooo

(c) This above result is of course true in general. It is a result that in my opinion
just requires a lot of practice to get used to.

i. Let π = (1, 2)(4, 9) and γ = (1, 7)(2, 3, 9) be two elements of S9. Write out
explicitly what these functions are.
We have the two functions are

π(1) = 2 and γ(1) = 7

π(2) = 1 and γ(2) = 3

π(3) = 3 and γ(3) = 9

π(4) = 9 and γ(4) = 4

π(5) = 5 and γ(5) = 5

π(6) = 6 and γ(6) = 6

π(7) = 7 and γ(7) = 1

π(8) = 8 and γ(8) = 8

π(9) = 4 and γ(9) = 2

ii. Find the cycle product of π and γ like we did above.
We want to find the cycle product (12)(49)(17)(239). By using the same
method we did in part (b) we see that this cycle can be simplified as
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A. 1 goes to 2 which goes to 3 so 1 goes to 3

B. 2 goes to 1 which goes to 7 so 2 goes to 7

C. 3 goes to 9

D. 4 goes to 9 which goes to 2 so 4 goes to 2

E. 5 goes to 5

F. 6 goes to 6

G. 7 goes to 1

H. 8 goes to 8

I. 9 goes to 4

Putting it all together we get the cycle (139427)

iii. Find the function composite πγ (Again, this means the composite S
π−→ S

γ−→ S
where S is some set of 9 elements).
The function composition is given as

γ(π(1)) = γ(2) = 3

γ(π(2)) = γ(1) = 7

γ(π(3)) = γ(3) = 9

γ(π(4)) = γ(9) = 2

γ(π(5)) = γ(5) = 5

γ(π(6)) = γ(6) = 6

γ(π(7)) = γ(7) = 1

γ(π(8)) = γ(8) = 8

γ(π(9)) = γ(4) = 4

iv. Write the cycle decomposition of the function you found above. Compare to
part ii.
Looking at the function above, we get the cycle is given as (139427), which
is the same cycle as in part (ii)!!!!!

(d) So we have learned how to multiply cycles and see that they correspond to the
cycle we get from function composition. The only thing left to determine is how to
read off the inverse of a function from its cycle. Let’s do that by way of example.

i. Let ψ = (1, 3, 2)(4) ∈ S4. This is the function

ψ(1) = 3

ψ(2) = 1

ψ(3) = 2

ψ(4) = 4
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Then the inverse of this function is given by

ψ−1(1) = 2

ψ−1(2) = 3

ψ−1(3) = 1

ψ−1(4) = 4

Find the cycle decomposition of ψ−1 and compare it to the cycle decomposi-
tion of ψ
The cycle decomposition of ψ−1 is given as (123)(4). Note that (123)=(231)
as functions- the only difference is your ”starting place”).
Looking at the cycle for ψ = (132) we see the cycle of the inverse is given by
”reading backwards”- that is going from right to left instead of left to right.

ii. Let ψ = (1, 3)(2, 4, 5) ∈ S5.

A. Find ψ−1.
We have the function is given as

ψ−1(1) = 3

ψ−1(2) = 5

ψ−1(3) = 1

ψ−1(4) = 2

ψ−1(5) = 4

B. Find the cycle decomposition of ψ−1 and compare it to the cycle decom-
position of ψ
The cycle of ψ−1 is therefore given as (13)(254).
We again have the cycle of the inverse is given by reading each cycle of
the original function from right to left!

iii. With these two examples in mind, create a conjecture as to a formula for
(a1, a2, . . . an)−1.
With the examples above in mind, the formula is given by (a1, a2, . . . an)−1 =
(an, an−1, . . . a2, a1).
One can quickly check that multiplying those two cycles gives the trivial cycle,
which confirms our conjecture.
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