
Math 111A Worksheet 7 Fall, 2020

Goals

• Investigate consequences of the class equation

• Recognize how and when to apply results from the Class Equation

• Recall and deduce some basic consequences of Sylow’s Theorems

• Apply Sylow’s Theorem to new contexts to classify certain groups

Introduction

Much of finite group theory has a combinatorial flavor to it, and we exhibit more of that
in this section. Namely, we recall the so called Class Equation, and we work through some
elementary, yet powerful consequences of it. For example, for an infinite family of groups
we can say exactly how many elements commute in each group. We can then turn to one of
the most important topics in finite group theory; the so called Sylow Theorems. These give
a weakened converse to LaGrange’s Theorem, and are the most essential tool we will use in
unwinding the structure of finite groups.

1 The Class Equation

Throughout this class we have made use of Equivalence Relations. In the very first week, we
saw that the definition of cosets defined an equivalence relation, and we used the correspond-
ing partition to deduce LaGrange’s Thrm. Last week, we defined an equivalence relation
on bijective functions to show that every permutation can be written as a disjoint union of
cycles. The equivalence relation we are now interested in is conjugation. Let us recall it for
completion.

1. Define a relation on our group G by a ∼ b ⇐⇒ a = gbg−1 for some g

2. In class you showed that this actually gives an Equivalence relation: The only tricky
part is transitive. Prove that again here. (Hint: remember that (xy)−1 = y−1x−1)
Solution: Indeed suppose a = g1bg

−1
1 and b = g2cg

−1
2 for some g1, g2 ∈ G. Then we can

substitute b into the equation with a to get a = g1(g2cg
−1
2 )g−11 = (g1g2)c(g1g2)

−1.
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3. Great, so we have a new equivalence relation to play with- and with that a new partition
of our space! Let us denote C(a) as the equivalence class of a under this relation. In
this case, we call this equivalence class the “Conjugacy Class of a” As a set we have
C(a) = {b ∈ G : a = gbg−1 for some g ∈ G}. Then we get that G =

⊔
C(a) (that is,

G is a disjoint union of these equivalence classes). So our immediate task is simplifying
this partition so we can get some useful information out of it.

(a) Does this partition actually tell us anything new if G is an abelian group?
Solution: Notice that if G is abelian, the conjugacy class for any element is just
the element itself. Indeed gag−1 = agg−1 = a for all g in G. Thus this partition
just says G is the union of all its elements, which is trivial.

(b) More generally, let a ∈ Z(G). What is C(a)?
Solution: The same logic above applies here: if a commutes with anything than
conjugation to it is trivial. Thus, for a ∈ Z(G) we have C(a) = {a}

Now you also showed in class that in general, the size of the conjugacy class of a is precisely
the index of the centralizer, that is |C(a)| = [G : N(a)]. Then using the above two problems,
we can group together those elements in the center, and then take orders of both sides to
get the Class Equation

|G| = |Z(G)|+
∑

a/∈Z(G)

[G : N(a)]

Let us see why this is so useful!

1. In the previous worksheet we worked through how to show that every group of order
p2, where p is prime, is abelian. So at this point we have

|G| = p =⇒ G is cyclic

|G| = p2 =⇒ G is abelian

So a natural guess would be that a group of order pn is abelian for ANY n. However, we
saw that failed last worksheet with a simple example of a group of order 8. However-
the truth is not much removed from that guess.

2. We saw in class that the Class Equation implies that a group of order pn has a non-
trivial center! This is immensely useful as we will see later in the course- it shows that
while p-groups aren’t in general Abelian, they are one of the next best thing (so called
solvable).

(a) One might not think this result is so impressive. However, it is definitly not a
claim that can be made about other Groups. For example,
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i. Show that S3 has a trivial center.
Solution: Note that σ ∈ Z(S3) ⇐⇒ γσγ−1 = σ for any choice of permuta-
tion γ. Assume that σ 6= id. Then σ(i) 6= i for some i ∈ {1, 2, 3}. Cook up
a permutation that can’t commute with this sigma, then explain why that
shows Z(G) = e.

ii. In fact show that Sn for n ≥ 3 has a trivial center!
Solution: Exact same argument as above! Let me know if you want to go
over your attempt of a proof!

(b) Moreover, we can use the fact that the center has more than 1 element in many
cases to say exactly how many elements it has.

i. Let G be a non-Abelian group of order 73. Then we claim exactly 7 elements
commute with every element in G.
Solution: By the class Equation we know |Z(G)| > 1 so by LaGrange’s Thrm
we have |Z(G)| ∈ {7, 72, 73}. However, we are assuming G is non-Abelian,
so the center cannot be all of G, hence |Z(G)| 6= 73. Now I claim that if
|Z(G)| = 72 then G would actually be Abelian, a contradiction. Prove this
claim and show why that finishes the proof. (Hint: How did we prove that
all groups of order p2 must be Abelian?)
If |Z(G)| = 72 then G/Z(G) would be cyclic (since it is of order 7, a prime
number). Yet we showed before that if G/Z(G) is cyclic then G is abelian, a
contradiction.

ii. How many elements commute with every element in a Non-Abelian group of
order 357, 911 = 713?
Solution: Exact same logic above applies here. 71 is a prime number, so this
group has nontrivial center, so it is of order |Z(G)| ∈ {71, 712, 713}. By the
same reasoning as above, we can conclude it must be of order 71.

iii. For p a prime, find the size of the center for a non-Abelian group of order p3.
Solution: It is of order exactly p.

Hopefully you can see that this is a rather powerful tool! If I asked you on week
one to find how many elements commute in a group of order 357,911 I think you
would quit the class!

3. Here is a good challenge problem that we will come back to later in the course hopefully.
The content of this problem more or less shows every p-group is solvable (whatever
that means)!

(a) Let G be a group of order 73. Then I claim there is a subgroup H1 of order 7 and
a subgroup H2 of order 49 such that H1 EH2 EG
Proof: By Cauchy’s Theorem there is a subgroup of order 7 in G, so let’s call
that subgroup H1. If G is abelian, this subgroup is normal, and if G is non-
abelian than problem 2 above shows that Z(G) has order 7- so either way we
have a normal subgroup of order 7. Now let us consider the quotient group
G/H1. This is a group of order 49 = 72 and thus also has a (normal) subgroup
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H of order 7. By the Fourth Isomorphism Thrm (See worksheet 5) this subgroup
is of the form H = H2/H1 for some subgroup H2 6 G containing H1. Since

7 = |H| = |H2|
|H1|

=
|H2|

7
we get that |H2| = 49.

Finally, I claim that H2 E G and H1 EH2. I leave these parts to you (again use
the 4th Iso Thrm and Problem 3.(c) in Cayle’s Thrm Section of worksheet 6)
H2 is of index 7 and is thus normal in G (since its index is the smallest prime
dividing the order of G). Moreover, H1 EG =⇒ H1 EH2 trivially.

(b) Let G = 74. Show there exists subgroups H1, H2.H3 of order 7, 72, 73 respectively
such that H1 EH2 EH3 EG.
I will leave this mostly unsolved- come talk to me about it if you want to go over
your attempt of a proof, I think it’s a great exercise. You can do this in cases-
if G is abelian, and if G is not abelian. If G is abelian you can prove it rather
quickly (use the result from part a). If G is not abelian, use that Z(G) is non
trivial, and again use part a.

(c) This is true more generally! State the more general claim for an arbitrary prime
p, and positive integer n- and then prove it if you can!
Let G be a group of order |G| = pn for p a prime, n ≥ 2. Show there exists a
chain of subgroups H1 E H2 E · · · E Hn−1 E G where |Hi| = pi and Hi−1 E Hi.
You can prove this rather easily using induction and the results from part a and
b. (Use the Lattice Isomorphism Thrm).

2 Sylow’s Theorems

One of the first major Theorems we learned in this course was LaGrange’s Theorem- which
said the order of a subgroup divides the order of the group. We have made clear however that
the converse does not hold- there might not be a subgroup of order n for all n that divide the
order of G. However, we have made some partial results in that direction, as that last section
shows. In particular, we have Cauchy’s Theorem, which says that there is a subgroup of order
p for each prime dividing the order of G. We also know that the converse for LaGrange’s
Thrm DOES hold for cyclic groups, and the Challenge problem above shows it also holds
for p-groups. These results hint that we should pay special attention to subgroups of prime
orders, and powers of prime order.

1. Rather than looking at just P-groups, we will be interested in p-subgroups of a given
group G. In other words, G itself won’t be a p-group, but we will be interested in
studying subgroups inside G that are p-groups.

2. To this end, we want to group together all powers of p that divide the group G and
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look at subgroups of that order. Let G be a group of order pαm where p - m (that is,
we have grouped together all powers of a given prime in the prime factorization of G).
Then a subgroup of order pα is called a “Sylow p-Subgroup of G”

Now, apriori, given a group G, we have no reason to expect that there is a subgroup of a
given order sitting inside it. So you should be very skeptical of the definition given above:
how do we know such a subgroup exists inside of G? It is a remarkable fact that such a
subgroup always exists in a group- and moreover, we can say a lot about how many exist!

For completion I will state the theorem here, however, it makes more sense to focus on
applications in this worksheet- so I won’t mention anything about the proof of this theorem
here, you will prove it in class! Let G be a group of order pαm where p - m is prime not
dividing m. Then

1. There exists (at least 1) Sylow p-subgroup

2. Any two Sylow p-subgroups are conjugate to one another. That is for two Sylow
p-subgroups P1, P2 there exists a g such that P2 = gP1g

−1

3. Let np = the number of Sylow p-subgroups. Then np ≡ 1 (mod p) and we have
np = [G : NG(P )] (ie np is the index of the normalizer of P for any Sylow subgroup P).
In particular np|m

This is truly a remarkable theorem as we shall see. Using 1 and 2 of the theorem let us first
prove a nice consequence: Let P be a Sylow p-Subgroup of G, then

1. If np = 1, then PEG (in words, if P is the unique Sylow p-subgroup, then it is normal).
Proof: Note that conjugation is an automorphism. Finish the proof.
Since conjugation is an automorphism, for any g ∈ G gPg−1 is again a Sylow p-
subgroup. Yet we are assuming that P is the only one, whence gPg−1 = P

2. If P EG then np = 1. Combining these two results shows this is an iff.
Proof: Use part 2 of the theorem, and what it means to be normal to conclude that P
is unique. Finish the proof.
We have that if Q is a Sylow p-subgroup, then Q = gPg−1 for some g. Yet P is normal,
so gPg−1 = P, whence Q=P.

3. As an application of the above, show that if G is an abelian group, then for any prime
p dividing the order of the group, the corresponding Sylow p-subgroup P is unique.
We have that every subgroup in an abelian group is normal. Hence a Sylow p-subgroup
P is normal in G, which by the above proves it is unique.
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Okay great- so parts 1 and 2 of the theorem give a nice way of looking for normal subgroups!
We just want to check if np = 1 or not! Now, in practice, how do we do that? This is where
number 3 of the theorem comes into play- let us see the power of this by way of examples.

1. Let G be a group of order |G| = 15 = 3× 5. Then

(a) Show there exists a normal subgroup of order 5.
Proof: Let P5 be a Sylow 5-subgroup, that exists by part 1 of Sylow’s Theorem.
Then we just want to show that n5 = 1 (using the results above). Now part 3 of
the theorem says that n5|3 and n5 ≡ 1 (mod 5). Since 3 is prime the only options
are that n5 = 1 or n5 = 3. However, 3 isn’t congruent to 1 mod 5, so we get that
n5 = 1 showing that P5 EG.

(b) Show that there exists a normal subgroup of order 3.
Proof: Hint- Use Sylow’s theorem like we did above. (Note that in this case, the
order of G does divide the index of H factorial- so we really do need new tools to
conclude that H is normal)
We again will consider n3 = the number of Sylow 3-subgroups. Note by Sylow’s
3rd thrm, n3|5 and n3 ≡ 1 mod 3. Combining these forces n3 = 1 so the Sylow 3
subgroup is normal by the above results.

(c) Since P3, P5 are of prime order they are cyclic- so let 〈x〉 = P5, 〈y〉 = P3 for some
x, y. Show that xy = yx.
Proof: Hint- we already showed this to some extent. Think about how we showed
a subgroup of order p is contained in the center for a group of order p2. Change
the details accordingly for this context:
Indeed P3EG,P5EG and P3∩P5 = e (by LaGrange’s Thrm.) Thus by a previous
HW elements from P3 and P5 commute.

(d) Use this to show that G must be a cyclic group.
Hint: Use the following fact- if ab = ba then the order of ab divides the least
common multiple of a and b.
BY part c we get that elements from P3, P5 commute so we can apply the hint to
the generators of P3, P5. Indeed, if we let x, y be generators for P3, P5 respectively
(as in part c) then we can use the hint and the work we did in part c to get that
|xy| = 15. That is G = 〈xy〉 is cyclic.

2. Let G be a group of order |G| = pq for primes p < q such that p - q − 1. Show that G
is cyclic.
Proof: Solution: The exact same solution that we did above applies here. Show there
are normal Sylow p and q subgroups that are cyclic because they are prime order.
Then the product of their generators generate the whole group.

3. Challenge Problem:
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(a) Let G be a group of order 12= 22× 3. Then if G doesn’t have a normal subgroup
of order 3 show that G ∼= A4

Proof: We have that n3 ≡ 1 (mod 3) and n3|4. Since we are assuming no Sylow
3-subgroup P is not normal, this forces n3 = 4. Recall that n3 = [G : NG(P )] yet
also [G : P ] = 4 so (since P 6 NG(P )) we have P = NG(P ). (Use the problem
about how LaGrange’s theorem is multiplicative from last worksheet if you don’t
buy that).
Finally, explain how the function defined last week ψ : G→ A(G/P ) ∼= S4 and the
lemma about normal subgroups contained in P from last week as well to conclude
that ψ is injective. Explain why that finishes the proof.
Indeed, recall that we saw that ker(ψ) is the largest normal subgroup contained
in P. Yet P is of prime order, and so it has no nontrivial subgroups. Since we are
assuming P itself is not normal, this forces ker(ψ) = e. Hence G is isomorphic to
a subgroup of order 12 in S4 (by the 1st Iso Thrm) and is thus isomorphic to A4.

(b) More generally, assume G is a group of order G = p2q for 2 < p < q. Show that
G has a normal subgroup of order q.
Proof: We need to show that nq = 1. Assume it is greater than 1, and get a
contradiction.
Indeed we have that nq|p2 and nq ≡ 1modq. Since we are assuming q > p we must
have that nq ∈ {1, p2} (since there is no way q divides p-1). Assume for the sake
of contradiction that nq = p2. Then we have that q|p2 − 1 = (p− 1)(p+ 1). Now
recall that q is a prime number, and that if a prime number divides a product
of numbers, it must divide one of them. Hence q|p − 1 or q|p + 1. Yet we
already remarked that q can’t divide p-1 so q must divide p+1. Note however
that q > p =⇒ q ≥ p + 1. Thus q=p+1 (since it divides it and is greater than
or equal to it). Yet the only consecutive primes are 2 and 3, so this would force
p=2, q=3. Yet we are assumming that 2 < p a contradiction. �
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