Invertible and Elementary Matrices

August 6, 2021

Question 1

For the following, give an example if one exists, or explain why no such example exists.

a) A 3x3 matrix which has a nonzero vector in its null space.

b) An invertible 4x4 matrix whose columns do not span \mathbb{R}^4

c) An invertible 3x3 matrix A, along with two 3x3 matrices B,C such that AB=AC but B \neq C

d) Two nonzero 3x3 matrices A,B such that $AB=0_{3x3}=BA$ (where 0_{3x3} is the 3x3 matrix of all 0's)

Question 2

Determine if the following matrices are invertible. If they are invertible find their inverse.

a)A=
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b) A= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.
c) A= $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 3 & 0 & 3 \end{pmatrix}$.

Question 3

Consider the matrix $A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$. First, compute the following three matrix multiplications

$$A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
(1)
(1)

$$A\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{pmatrix}$$
(2)

$$A \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(3)

State how these three matrices you get after computing the multiplication are related to the original matrix A. Is there a pattern, and can a general result be conjectured from this? (Hint, the matrices you are asked to multiply A by are elementary matrices: what happens when you multiply a matrix by an elementary matrix on the left?)